Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid

被引:55
作者
Wang, Qiyan [1 ,2 ]
Santos, Sara [3 ]
Urbina-Blanco, Cesar A. [3 ]
Hernandez, Willinton Y. [1 ]
Imperor-Clerc, Marianne [4 ]
Vovk, Evgeny, I [5 ]
Marinova, Maya [6 ]
Ersen, Ovidiu [7 ]
Baaziz, Walid [7 ]
Safonova, Olga, V [8 ]
Khodakov, Andrei Y. [2 ]
Saeys, Mark [3 ]
Ordomsky, Vitaly V. [1 ,2 ]
机构
[1] UMI 3464 CNRS Solvay, Ecoefficient Prod & Proc Lab E2P2L, Shanghai 201108, Peoples R China
[2] Univ Lille, Univ Artois, CNRS, Cent Lille,ENSCL,UMR 8181,UCCS Unite Catalyse & C, F-59000 Lille, France
[3] Univ Ghent, Lab Chem Technol LCT, Dept Mat Text & Chem Engn, Technol Pk 125, B-9052 Ghent, Belgium
[4] Univ Paris Saclay, Univ Paris Sud, Lab Phys Solides, CNRS, F-91400 Orsay, France
[5] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[6] Univ Lille, Univ Artois, CNRS,INRAE, Cent Lille,FR 2638,IMEC Inst Michel Eugene Chevre, F-59000 Lille, France
[7] Univ Strasbourg, IPCMS, UMR 7504 CNRS, 23 Rue Loess,BP 43, F-67034 Strasbourg 2, France
[8] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
关键词
Ru; Solid micelles; Single-atom catalysts; CO2; hydrogenation; Formic acid; CARBON-DIOXIDE; NANOPARTICLES; METHANOL; OXIDATION; FORMATE; MCM-41;
D O I
10.1016/j.apcatb.2021.120036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic hydrogenation of CO2 to formic acid is one of the most promising pathways towards a renewable hydrogen-storage system. The reaction is usually performed in aqueous phase in the presence of basic molecules over homogeneous or heterogeneous catalysts, generating relatively dilute formate solutions (<1 M). The newly designed solid micellar Ru single-atom catalyst enables efficient and stable water-free CO2 hydrogenation to formate under mild reaction conditions. Concentrated formate solutions (up to 4 M) are produced directly from the hydrogenation of carbon dioxide in water-free tertiary amine. In the catalyst, Ru(III) single sites are incorporated into the walls of MCM-41 during hydrolysis creating a solid micelle structure. The presence of the CTA(+) surfactant in the pores of MCM-41 stabilizes the Ru sites and prevents catalyst deactivation. DFT modelling suggests that the reaction proceeds via heterolytic hydrogen splitting, forming a Ru-H species and subsequent hydride transfer to CO2.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts [J].
Abdel-Mageed, Ali M. ;
Wiese, Klara ;
Parlinska-Wojtan, Magdalena ;
Rabeah, Jabor ;
Brueckner, Angelika ;
Behm, R. Juergen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
[2]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[3]   Molecular Insights on the Role of (CTA+)(SiO-) Ion Pair into the Catalytic Activity of [CTA+]-Si-MCM-41 [J].
Aymara Alegre, Clara Iris ;
Fernanda Zalazar, Maria ;
Buhoes Cazula, Barbara ;
Jose Alves, Helton ;
Maria Peruchena, Nelida .
TOPICS IN CATALYSIS, 2019, 62 (12-16) :941-955
[4]   ENANTIOSELECTIVE CATALYSIS .43. ENANTIOSELECTIVE CATALYTIC TRANSFER-HYDROGENATION OF ALPHA,BETA-UNSATURATED CARBOXYLIC-ACIDS WITH TRIETHYLAMMONIUM FORMATE [J].
BRUNNER, H ;
LEITNER, W .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1988, 27 (09) :1180-1181
[5]   Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates [J].
Bulushev, Dmitri A. ;
Ross, Julian R. H. .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2018, 60 (04) :566-593
[6]  
Chastain J., 1992, Handbook of X-ray photoelectron spectroscopy, V40, P221, DOI DOI 10.1007/S10853-011-5503-Y
[7]   Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method [J].
Chen, Fei ;
Zhang, Peipei ;
Zeng, Yan ;
Kosol, Rungtiwa ;
Xiao, Liwei ;
Feng, Xiaobo ;
Li, Jie ;
Liu, Guangbo ;
Wu, Jinhu ;
Yang, Guohui ;
Yoneyama, Yoshiharu ;
Tsubaki, Noritatsu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279
[8]   Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity [J].
Chen, Yizhen ;
Li, Hongliang ;
Zhao, Wanghui ;
Zhang, Wenbo ;
Li, Jiawei ;
Li, Wei ;
Zheng, Xusheng ;
Yan, Wensheng ;
Zhang, Wenhua ;
Zhu, Junfa ;
Si, Rui ;
Zeng, Jie .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH [J].
Chen, Zhou ;
Fan, Tingting ;
Zhang, Ya-Qian ;
Xiao, Jing ;
Gao, Minrui ;
Duan, Nanqi ;
Zhang, Jiawei ;
Li, Jianhui ;
Liu, Qingxia ;
Yi, Xiaodong ;
Luo, Jing-Li .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2020, 261
[10]   Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO [J].
Dou, Jian ;
Sheng, Yuan ;
Choong, Catherine ;
Chen, Luwei ;
Zeng, Hua Chun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 219 :580-591