Locality Preserving Fisher Discriminant Analysis for Face Recognition

被引:0
作者
Zhao, Xu [1 ]
Tian, Xiaoyan [1 ]
机构
[1] Beijing Univ Technol, Lab Comp Software & Theory, Beijing, Peoples R China
来源
EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PROCEEDINGS | 2009年 / 5754卷
关键词
Fisher Discriminant Criterion; Locality Preserving Projection; Face Recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dimensionality reduction is a key technology for face recognition. In this paper, we propose a novel method, called Locality Preserving Fisher Discriminant Analysis (LPFDA), which extends the original Fisher Discriminant Analysis by preserving the locality structure of the data. LPFDA can get a sub-space projection matrix by solving a generalized eigenvalue problem. Several experiments are conducted to demonstrate the effectiveness and robustness of our method.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 13 条
  • [1] [Anonymous], P 10 IASTED INT C SI
  • [2] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [3] Belkin M, 2002, ADV NEUR IN, V14, P585
  • [4] Fan Chung R. K., 1997, REGIONAL C SERIES MA, V92
  • [5] He P., 2003, P 16 INT C NEUR INF, P153
  • [6] He XF, 2005, IEEE I CONF COMP VIS, P1208
  • [7] Face recognition using Laplacianfaces
    He, XF
    Yan, SC
    Hu, YX
    Niyogi, P
    Zhang, HJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (03) : 328 - 340
  • [8] Jolliffe IT., 2002, Principal component analysis, P338, DOI DOI 10.1039/C3AY41907J
  • [9] Roweis SamT., 2003, J MACHINE LEARNING R, V4, P119, DOI DOI 10.1162/153244304322972667
  • [10] Nonlinear dimensionality reduction by locally linear embedding
    Roweis, ST
    Saul, LK
    [J]. SCIENCE, 2000, 290 (5500) : 2323 - +