ECG Arrhythmia Classification By Using Convolutional Neural Network And Spectrogram

被引:9
|
作者
Sen, Sena Yagmur [1 ]
Ozkurt, Nalan [1 ]
机构
[1] Yasar Univ, Dept Elect & Elect Engn, Izmir, Turkey
来源
2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU) | 2019年
关键词
Deep learning; electrocardiogram; arrhythmia detection; convolutional neural network; COMPONENT ANALYSIS; FOURIER-TRANSFORM; SELECTION;
D O I
10.1109/asyu48272.2019.8946417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, the electrocardiography (ECG) arrhythmias have been classified by the proposed framework depend on deep neural networks in order to features information. The proposed approaches operates with a large volume of raw ECG time-series data and ECG signal spectrograms as inputs to a deep convolutional neural networks (CNN). Heartbeats are classified as normal ( N), premature ventricular contractions (PVC), right bundle branch block (RBBB) rhythm by using ECG signals obtained from MIT-BIH arrhythmia database. The first approach is to directly use ECG time-series signals as input to CNN, and in the second approach ECG signals are converted into time-frequency domain matrices and sent to CNN. The most appropriate parameters such as number of the layers, size and number of the filters are optimized heuristically for fast and efficient operation of the CNN algorithm. The proposed system demonstrated high classification rate for the time-series data and spectrograms by using deep learning algorithms without standard feature extraction methods. Performance evaluation is based on the average sensitivity, specificity and accuracy values. It is also worth to note that spectrogram increases the performance of classification since it extracts the useful time-frequency information of the signal.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [31] ArrhyNet: A High Accuracy Arrhythmia Classification Convolutional Neural Network
    Aphale, Sayli Siddhasanjay
    John, Eugene
    Banerjee, Taposh
    2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2021, : 453 - 457
  • [32] Water Classification Using Convolutional Neural Network
    Asghar, Saira
    Gilanie, Ghulam
    Saddique, Mubbashar
    Ullah, Hafeez
    Mohamed, Heba G.
    Abbasi, Irshad Ahmed
    Abbas, Mohamed
    IEEE ACCESS, 2023, 11 : 78601 - 78612
  • [33] Improved convolutional neural network with feature selection for imbalanced ECG Multi-Factor classification
    Xiong, Yingnan
    Wang, Lin
    Wang, Qingnan
    Liu, Shan
    Kou, Bo
    MEASUREMENT, 2022, 189
  • [34] Classification of Brainwaves Using Convolutional Neural Network
    Joshi, Swapnil R.
    Headley, Drew B.
    Ho, K. C.
    Pare, Denis
    Nair, Satish S.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [35] Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss
    Lu, Yi
    Jiang, Mingfeng
    Wei, Liying
    Zhang, Jucheng
    Wang, Zhikang
    Wei, Bo
    Xia, Ling
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [36] Interpretation and Classification of Arrhythmia Using Deep Convolutional Network
    Singh, Prateek
    Sharma, Ambalika
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] Full Training Convolutional Neural Network for ECG Signals Classification
    Kaouter, Karboub
    Mohamed, Tabaa
    Sofiene, Dellagi
    Abbas, Dandache
    Fouad, Moutaouakkil
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19GR, 2019, 2190
  • [38] Automatic ECG classification using discrete wavelet transform and one-dimensional convolutional neural network
    Armin Shoughi
    Mohammad Bagher Dowlatshahi
    Arefeh Amiri
    Marjan Kuchaki Rafsanjani
    Ranbir Singh Batth
    Computing, 2024, 106 : 1227 - 1248
  • [39] Automatic ECG classification using discrete wavelet transform and one-dimensional convolutional neural network
    Shoughi, Armin
    Dowlatshahi, Mohammad Bagher
    Amiri, Arefeh
    Rafsanjani, Marjan Kuchaki
    Batth, Ranbir Singh
    COMPUTING, 2024, 106 (04) : 1227 - 1248
  • [40] A transformer-based deep neural network for arrhythmia detection using continuous ECG signals
    Hu, Rui
    Chen, Jie
    Zhou, Li
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144