The NASICON solid solution Li1-x La x /3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements

被引:10
作者
Barre, M. [1 ]
Le Berre, F. [1 ]
Crosnier-Lopez, M-P. [1 ]
Galven, C. [1 ]
Bohnke, O. [1 ]
Fourquet, J-L. [1 ]
机构
[1] Univ Maine, CNRS, Inst Rech Ingn Mol & Mat Fonct, Lab Oxydes & Fluorures,FR 2575,UMR 6010, F-72085 Le Mans 9, France
关键词
NASICON-type structure; Li1-xLax/3Zr2(PO4)(3); Sintering; Hot Isostatic Pressing; Spark Plasma Sintering; Impedance spectroscopy; Ionic conductivity; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; LITHIUM LOCATION; LI+ CONDUCTORS; LA1/3ZR2(PO4)(3); DENSIFICATION; ELECTROLYTES; ENHANCEMENT; CERAMICS;
D O I
10.1007/s11581-009-0332-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li1-x La (x) Zr-/3(2)(PO4)(3) NASICON-type compounds (0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 1) have been synthesized in powder form by a sol-gel method and sintered for ionic conductivity measurements. In order to improve the compactness of the ceramic without decomposition of the compound, several sintering processes have been tested for one member of the solid solution (x = 0.6): the use of sintering aids (ZnO, B2O3, TiO2 and LiNO3), a ball-milling of the synthesized powder, a flash heating, high isostatic pressure, and spark plasma sintering. Finally, a satisfactory compactness of 85% is obtained compared to the referenced value (63%) obtained by uniaxial and isostatic pressing. The ionic conductivity study was performed by impedance spectroscopy. It shows that, despite the formation of vacancies, the substitution Li+-> 1/3 La3+ + 2/3 a- has unfortunately no influence on the conduction for 0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 0.7 since the ionic conductivity remains identical to the LiZr2(PO4)(3) one. For higher x values, the ionic conductivity strongly decreases.
引用
收藏
页码:681 / 687
页数:7
相关论文
共 25 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[3]   Synthesis and structural study of a new NASICON-type solid solution:: Li1-xLax/3Zr2(PO4)3 [J].
Barre, M. ;
Crosnier-Lopez, M. P. ;
Le Berre, F. ;
Suard, E. ;
Fourquet, J. L. .
JOURNAL OF SOLID STATE CHEMISTRY, 2007, 180 (03) :1011-1019
[4]   La3+ diffusion in the NASICON-type compound La1/3Zr2(PO4)3:: X-ray thermodiffraction, 31P NMR, and ionic conductivity investigations [J].
Barre, M. ;
Le Berre, F. ;
Crosnier-Lopez, M. P. ;
Bohnke, O. ;
Emery, J. ;
Fourquet, J. L. .
CHEMISTRY OF MATERIALS, 2006, 18 (23) :5486-5491
[5]   Room temperature crystal structure of La1/3Zr2(PO4)3, a NASICON-type compound [J].
Barre, M ;
Crosnier-Lopez, MP ;
Le Berre, F ;
Emery, J ;
Suard, E ;
Fourquet, JL .
CHEMISTRY OF MATERIALS, 2005, 17 (26) :6605-6610
[6]   Lithium location in NASICON-type Li+ conductors by neutron diffraction.: I.: Triclinic α′-LiZr2(PO4)3 [J].
Catti, M ;
Stramare, S ;
Ibberson, R .
SOLID STATE IONICS, 1999, 123 (1-4) :173-180
[7]   Lithium location in NASICON-type Li+ conductors by neutron diffraction:: II.: Rhombohedral α-LiZr2(PO4)3 at T=423 K [J].
Catti, M ;
Stramare, S .
SOLID STATE IONICS, 2000, 136 :489-494
[8]   Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A = Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates [J].
Chakir, M ;
El Jazouli, A ;
de Waal, D .
JOURNAL OF SOLID STATE CHEMISTRY, 2006, 179 (06) :1883-1891
[9]   Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes [J].
Chang, CM ;
Hong, SH ;
Park, HM .
SOLID STATE IONICS, 2005, 176 (35-36) :2583-2587
[10]  
HAGAWA Y, 2007, J NEW MAT ELECTR SYS, V10, P177