Dependence Guided Unsupervised Feature Selection

被引:0
|
作者
Guo, Jun [1 ]
Zhu, Wenwu [1 ,2 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2018年
基金
中国国家自然科学基金;
关键词
INFORMATION; FRAMEWORK;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the past decade, various sparse learning based unsupervised feature selection methods have been developed. However, most existing studies adopt a two-step strategy. i.e., selecting the top-m features according to a calculated descending order and then performing K-means clustering, resulting in a group of sub-optimal features. To address this problem, we propose a Dependence Guided Unsupervised Feature Selection (DGUFS) method to select features and partition data in a joint manner. Our proposed method enhances the interdependence among original data, cluster labels, and selected features. In particular, a projection-free feature selection model is proposed based on l(2,0)-norm equality constraints. We utilize the learned cluster labels to fill in the information gap between original data and selected features. Two dependence guided terms are consequently proposed for our model. More specifically, one term increases the dependence of desired cluster labels on original data, while the other term maximizes the dependence of selected features on cluster labels to guide the process of feature selection. Last but not least, an iterative algorithm based on Alternating Direction Method of Multipliers (ADMM) is designed to solve the constrained minimization problem efficiently. Extensive experiments on different datasets consistently demonstrate that our proposed method significantly outperforms state-of-the-art baselines.
引用
收藏
页码:2232 / 2239
页数:8
相关论文
共 50 条
  • [1] Consensus Guided Unsupervised Feature Selection
    Liu, Hongfu
    Shao, Ming
    Fu, Yun
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1874 - 1880
  • [2] Block Model Guided Unsupervised Feature Selection
    Bai, Zilong
    Nguyen, Hoa
    Davidson, Ian
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1201 - 1211
  • [3] Subspace clustering guided unsupervised feature selection
    Zhu, Pengfei
    Zhu, Wencheng
    Hu, Qinghua
    Zhang, Changqing
    Zuo, Wangmeng
    PATTERN RECOGNITION, 2017, 66 : 364 - 374
  • [4] Unsupervised feature selection guided by orthogonal representation of feature space
    Jahani, Mahsa Samareh
    Aghamollaei, Gholamreza
    Eftekhari, Mahdi
    Saberi-Movahed, Farid
    NEUROCOMPUTING, 2023, 516 : 61 - 76
  • [5] Pairwise dependence-based unsupervised feature selection
    Lim, Hyunki
    Kim, Dae-Won
    PATTERN RECOGNITION, 2021, 111
  • [6] Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection
    Li, Zechao
    Liu, Jing
    Yang, Yi
    Zhou, Xiaofang
    Lu, Hanqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (09) : 2138 - 2150
  • [7] Consensus learning guided multi-view unsupervised feature selection
    Tang, Chang
    Chen, Jiajia
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Wang, Minhui
    Lu, Peng
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 49 - 60
  • [8] Soft Label Guided Unsupervised Discriminative Sparse Subspace Feature Selection
    Chen, Keding
    Peng, Yong
    Nie, Feiping
    Kong, Wanzeng
    JOURNAL OF CLASSIFICATION, 2024, 41 (01) : 129 - 157
  • [9] Nonnegative Laplacian embedding guided subspace learning for unsupervised feature selection
    Zhang, Yong
    Wang, Qing
    Gong, Dun-wei
    Song, Xian-fang
    PATTERN RECOGNITION, 2019, 93 : 337 - 352
  • [10] Soft Label Guided Unsupervised Discriminative Sparse Subspace Feature Selection
    Keding Chen
    Yong Peng
    Feiping Nie
    Wanzeng Kong
    Journal of Classification, 2024, 41 : 129 - 157