Spam review detection using self attention based CNN and bi-directional LSTM

被引:37
|
作者
Bhuvaneshwari, P. [1 ]
Rao, A. Nagaraja [1 ]
Robinson, Y. Harold [2 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
[2] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, Tamil Nadu, India
关键词
E-commerce; Opinion spam reviews; Machine learning; Deep learning; Self attention-based CNN Bi-LSTM (ACB) model; Convolution neural network; Self-attention mechanism; Bidirectional long short term memory;
D O I
10.1007/s11042-021-10602-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Opinion reviews are a valuable source of information in e-commerce. Indeed, it benefits users in buying decisions and businesses to enhance their quality. However, various greedy organizations employ spammers to post biased spam reviews to gain an advantage or to degrade the reputation of a competitor. This results in the explosive growth of opinion spamming. Due to its nature and their increasing volume, spam reviews are a fast-growing serious issue on the internet. Until now, researchers have developed many Machine Learning (ML) based methods to identify opinion spam reviews. However, the traditional ML methods cannot effectively detect spam messages due to the limited feature representations and the data manipulations done by spammers to escape from the detection mechanism. As an alternative to ML-based detection, in this paper, we proposed a Deep Learning (DL) based novel framework called Self Attention-based CNN Bi-LSTM (ACB) model to learn document level representation for identifying the spam reviews. Our approach computes the weightage of each word present in the sentence and identifies the spamming clues exists in the document with an attention mechanism. Then the model learns sentence representation by using Convolution Neural Network (CNN) and extracts the higher-level n-gram features. Then finally, sentence vectors are combined using Bi-directional LSTM (Bi-LSTM) as document feature vectors and identify the spam reviews with contextual information. The evaluated experiment results are compared with its variants and the result shows that ACB outperforms other variants in terms of classification accuracy.
引用
收藏
页码:18107 / 18124
页数:18
相关论文
共 50 条
  • [41] MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM
    Peng, Yongfang
    Tian, Shengwei
    Yu, Long
    Lv, Yalong
    Wang, Ruijin
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (11) : 5580 - 5593
  • [42] Feature Envy Detection based on Bi-LSTM with Self-Attention Mechanism
    Wang, Hongze
    Liu, Jing
    Kang, JieXiang
    Yin, Wei
    Sun, Haiying
    Wang, Hui
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 448 - 457
  • [43] Keyword Extraction from Online Product Reviews Based on Bi-Directional LSTM Recurrent Neural Network
    Wang, Y.
    Zhang, J.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 2241 - 2245
  • [44] Bi-Directional Human Pose Completion Based on RNN and Attention Mechanism
    Yang Y.
    Nie Y.
    Zhang Q.
    Li P.
    Li G.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (11): : 1772 - 1783
  • [45] Multi-Candidate Word Segmentation using Bi-directional LSTM Neural Networks
    Lapjaturapit, Theerapat
    Viriyayudhakorn, Kobkrit
    Theeramunkong, Thanaruk
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [46] A Ternary Bi-Directional LSTM Classification for Brain Activation Pattern Recognition Using fNIRS
    Wickramaratne, Sajila D.
    Mahmud, Md Shaad
    2020 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS 2020), 2020, : 202 - 207
  • [47] Speech emotion recognition based on Bi-directional LSTM architecture and deep belief networks
    Senthilkumar, N.
    Karpakam, S.
    Devi, M. Gayathri
    Balakumaresan, R.
    Dhilipkumar, P.
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 2180 - 2184
  • [48] Sandstorm Detection Using Attention Bi-LSTM UNet
    Mahmoud, Amira S.
    El-Morshedy, Rasha M.
    Metwalli, Mohamed R.
    Mostafa, Marwa S.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, : 1065 - 1076
  • [49] CAT-BiGRU: Convolution and Attention with Bi-Directional Gated Recurrent Unit for Self-Deprecating Sarcasm Detection
    Ashraf Kamal
    Muhammad Abulaish
    Cognitive Computation, 2022, 14 : 91 - 109
  • [50] CAT-BiGRU: Convolution and Attention with Bi-Directional Gated Recurrent Unit for Self-Deprecating Sarcasm Detection
    Kamal, Ashraf
    Abulaish, Muhammad
    COGNITIVE COMPUTATION, 2022, 14 (01) : 91 - 109