A meta-inspired termite queen algorithm for global optimization and engineering design problems

被引:23
|
作者
Chen, Peng [1 ]
Zhou, Shihua [1 ]
Zhang, Qiang [1 ,2 ]
Kasabov, Nikola [3 ,4 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[3] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
[4] Ulster Univ, Intelligent Syst Res Ctr, Coleraine BT52 1SA, North Ireland
关键词
Termite queen algorithm; Benchmarked functions; Loss minimization; Metaheuristic technique; Engineering design problems; DIFFERENTIAL EVOLUTION; SEARCH;
D O I
10.1016/j.engappai.2022.104805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel bio-inspired termite queen algorithm (TQA) to solve optimization problems by simulating the division of labor in termite populations under a queen's rule. TQA is benchmarked on a set of 23 functions to test its performance at solving global optimization problems, and applied to six real world engineering design problems to verify its reliability and effectiveness. Comparative simulation studies with other algorithms are conducted, from whose results it is observed that TQA satisfactorily solves global optimization problems and engineering design problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Hybrid Glowworm Swarm Optimization Algorithm for Constrained Engineering Design Problems
    Zhou, Yongquan
    Zhou, Guo
    Zhang, Junli
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 379 - 388
  • [22] EABOA: Enhanced adaptive butterfly optimization algorithm for numerical optimization and engineering design problems
    He, Kai
    Zhang, Yong
    Wang, Yu-Kun
    Zhou, Rong-He
    Zhang, Hong-Zhi
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 543 - 573
  • [23] White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
    Braik, Malik
    Hammouri, Abdelaziz
    Atwan, Jaffar
    Al-Betar, Mohammed Azmi A.
    Awadallah, Mohammed A.
    KNOWLEDGE-BASED SYSTEMS, 2022, 243
  • [24] A MODIFIED FIREFLY ALGORITHM FOR ENGINEERING DESIGN OPTIMIZATION PROBLEMS
    Kazemzadeh-Parsi, M. J.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2014, 38 (M2) : 403 - 421
  • [25] Optical microscope algorithm: A new metaheuristic inspired by microscope magnification for solving engineering optimization problems
    Cheng, Min-Yuan
    Sholeh, Moh Nur
    KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [26] African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Mirjalili, Seyedali
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 158
  • [27] Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
    Wang, Gai-Ge
    MEMETIC COMPUTING, 2018, 10 (02) : 151 - 164
  • [28] Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems
    Jiang, Yuxin
    Wu, Qing
    Zhu, Shenke
    Zhang, Luke
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 188
  • [29] A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
    Deng, Lingyun
    Liu, Sanyang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [30] Modified prairie dog optimization algorithm for global optimization and constrained engineering problems
    Yu, Huangjing
    Wang, Yuhao
    Jia, Heming
    Abualigah, Laith
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19086 - 19132