Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles

被引:95
作者
Chen, Meng [1 ]
Li, Jingjing [1 ]
机构
[1] Northeast Forestry Univ, Sch Transportat, 26 Hexing Rd, Harbin 150040, Peoples R China
来源
JOURNAL OF ENERGY STORAGE | 2020年 / 32卷
关键词
Heat dissipation management; Lithium-ion battery; Nanofluids; Pulsating heat pipe; PARTICLE-SIZE; STRUCTURE OPTIMIZATION; TRANSFER ENHANCEMENT; FRICTION FACTOR; PERFORMANCE; FLOW; SYSTEM; NANOPARTICLES; SUSPENSIONS; MECHANISMS;
D O I
10.1016/j.est.2020.101715
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The battery is the core component of electric vehicles (EVs). Effective thermal management of batteries directly influences the power, driving mileage, and safety of EVs. This experimental study has been conducted on a thermal management system based on a pulsating heat pipe (PHP) with a TiO2 containing nanofluid for lithium ion batteries in EVs under different ambient temperatures and operating conditions. This study shows that when the ambient temperature was increased, the PHP suppressed the rise in the maximum temperature on the surface of the lithium battery. In the process of continuous discharge at an ambient temperature of 35 degrees C and discharge rate of 1C, the maximum temperature of the battery does not exceed 42.22 degrees C, and the maximum temperature gradient across the battery is less than 2 degrees C. The distribution of temperature across the surface of the battery is more uniform, and the effective improvement rate is up to 60%. Also, at the end of discharge for 0.5C, 1C, and 1.5C, the lithium-ion batteries performed well with reference to the maximum temperature, surface temperature gradient, and temperature rise. These observations prove that the thermal management system based on PHP with a TiO2-based nanofluid has excellent heat dissipation performance which can minimize the temperature gradient and increase the thermal uniformity on the battery surface. Therefore, the TiO2-PHP ensures that lithium-ion battery performs well within the appropriate temperature range (20 degrees C-50 degrees C).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cacua K., 2018, J THERM ANAL CALORIM
  • [2] Chayawat C., 2019, WATER AIR SOIL POLL, V45, P50, DOI [DOI 10.1007/s11270-007-9372-6, DOI 10.1016/J.AMJMS.2021.03.001,00089-6]
  • [3] Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement
    Chen, Kai
    Song, Mengxuan
    Wei, Wei
    Wang, Shuangfeng
    [J]. ENERGY, 2018, 145 : 603 - 613
  • [4] Structure optimization of parallel air-cooled battery thermal management system
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    Chen, Lin
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 : 943 - 952
  • [5] HEAT-TRANSFER PHENOMENA IN LITHIUM POLYMER-ELECTROLYTE BATTERIES FOR ELECTRIC VEHICLE APPLICATION
    CHEN, Y
    EVANS, JW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) : 1833 - 1838
  • [6] Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness
    Das, Sarit K.
    Narayan, G. Prakash
    Baby, Anoop K.
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (07) : 1099 - 1108
  • [7] Air-cooled fuel cells: Keys to design and build the oxidant/cooling system
    De las Heras, A.
    Vivas, F. J.
    Segura, F.
    Redondo, M. J.
    Andujar, J. M.
    [J]. RENEWABLE ENERGY, 2018, 125 : 1 - 20
  • [8] Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system
    E, Jiaqiang
    Han, Dandan
    Qiu, An
    Zhu, Hao
    Deng, Yuanwang
    Chen, Jingwei
    Zhao, Xiaohuan
    Zuo, Wei
    Wang, Hongcai
    Chen, Jianmei
    Peng, Qingguo
    [J]. APPLIED THERMAL ENGINEERING, 2018, 132 : 508 - 520
  • [9] Esfahani J.A., 2018, J THERM ANAL CALORIM
  • [10] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262