On the Conjecture for Certain Laplacian Integral Spectrum of Graphs

被引:12
|
作者
Das, Kinkar Ch. [1 ]
Lee, Sang-Gu [1 ]
Cheon, Gi-Sang [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
graph; Laplacian matrix; largest eigenvalue; second smallest eigenvalue; Laplacian spectrum; diameter; EIGENVALUES; ACHIEVE;
D O I
10.1002/jgt.20412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph of order n with Laplacian spectrum {lambda(n), lambda(n-1), ... , lambda(1)} where 0=lambda(n) <= lambda(n-1) <= ... <= lambda(1). If there exists a graph whose Laplacian spectrum is S= {0, 1, ... , n-1}, then we say that S is Laplacian realizable. In [6], Fallat et al. posed a conjecture that S is not Laplacian realizable for any n >= 2 and showed that the conjecture holds for n <= 11, n is prime, or n = 2, 3 (mod 4). In this article, we have proved that (i) if G is connected and lambda(1) = n-1 then G has diameter either 2 or 3, and (ii) if lambda(1) = n-1 and lambda(n-1)= 1 then both G and (G) over bar, the complement of G, have diameter 3. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 106-113, 2010
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [11] Constructably Laplacian integral graphs
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 3 - 21
  • [12] On the Laplacian integral (k - 1)-cyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    ARS COMBINATORIA, 2015, 119 : 247 - 256
  • [13] Spectral integral variations and Laplacian integral graphs
    Wang, Yi
    Fan, Yi-Zheng
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 300 - 303
  • [14] On integer matrices with integer eigenvalues and Laplacian integral graphs
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [15] ON REAL OR INTEGRAL SKEW LAPLACIAN SPECTRUM OF DIGRAPHS
    Pirzada, S.
    Ganie, Hilal A.
    Chat, Bilal A.
    OPERATORS AND MATRICES, 2020, 14 (04): : 795 - 813
  • [16] LAPLACIAN INTEGRAL SUBCUBIC SIGNED GRAPHS
    Wang, Dijian
    Hou, Yaoping
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 163 - 176
  • [17] Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs
    Ganie, Hilal A.
    Pirzada, S.
    Rather, Bilal A.
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 : 1 - 18
  • [18] Laplacian energy and first Zagreb index of Laplacian integral graphs
    Hameed, Abdul
    Khan, Zia Ullah
    Tyaglov, Mikhail
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 133 - 160
  • [19] Graphs with integral spectrum
    Ahmadi, Omran
    Alon, Noga
    Blake, Ian F.
    Shparlinski, Igor E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 547 - 552
  • [20] Constraints on Brouwer's Laplacian spectrum conjecture
    Cooper, Joshua N.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 615 : 11 - 27