This study provides an analysis of the potential for a sub-energy system to provide an electricity balancing service to, in this case, a national energy system with a large share of variable renewable electricity generation. By comparing electricity balancing capacity, CO2, eq-emissions, and costs, three different local residential energy system setups are assessed. The setups contain different combinations of district heating, combined heat and power, thermal energy storage, electric battery storage, heat pumps, and electric boilers. The analysis focuses on system-level integration, heat and electricity cross-sectoral operations, and unconventional production strategies for district heating production. The results show that local sub-energy systems with heat pumps, combined heat and power, and thermal energy storage has the potential to reduce national electricity balancing demand in an economically feasible way, and with modest CO2, eq-emissions. It was also shown that electricity-based heat production without district heating is economically unfavourable, even in the most optimistic scenario; it is not likely to be feasible within a 30-year period.