Functional maximum-likelihood estimation of ARH(p) models

被引:23
|
作者
Ruiz-Medina, M. D. [1 ]
Salmeron, R. [2 ]
机构
[1] Univ Granada, Dept Estadist & Invest Operat, E-18071 Granada, Spain
[2] Univ Granada, Dept Metodos Cuantitativos Econ & Empresa, Granada 18011, Spain
关键词
Autoregressive Hilbertian models; Dimension reduction; Finite-dimensional approximation; Functional parameters; Maximum-likelihood estimation; Singular value decomposition; Spatial functional data sequence; GENE-EXPRESSION DATA; SINGULAR-VALUE DECOMPOSITION; AUTOREGRESSIVE MODELS; LONGITUDINAL DATA; CLASSIFICATION; CONVERGENCE; OPERATOR;
D O I
10.1007/s00477-009-0306-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.
引用
收藏
页码:131 / 146
页数:16
相关论文
共 50 条
  • [21] Maximum-likelihood parameter estimation for image ringing-artifact removal
    Yang, S
    Hu, YH
    Nguyen, TQ
    Tull, DL
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2001, 11 (08) : 963 - 973
  • [22] Maximum-likelihood period estimation from sparse, noisy timing data
    McKilliam, Robby
    Clarkson, I. Vaughan L.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3697 - 3700
  • [23] Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes
    Surace, Simone Carlo
    Pfister, Jean-Pascal
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) : 2814 - 2829
  • [24] A Polynomial Approximation Algorithm for Real-Time Maximum-Likelihood Estimation
    Villien, Christophe
    Ostertag, Eric P.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (06) : 2085 - 2095
  • [25] Stochastic Maximum-Likelihood DOA estimation in the presence of unknown nonuniform noise
    Chen, C. E.
    Lorenzelli, F.
    Hudson, R. E.
    Yao, K.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2481 - 2484
  • [26] Maximum-likelihood estimation of FIR channels excited by convolutionally encoded inputs
    Cirpan, HA
    Tsatsanis, MK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (07) : 1125 - 1128
  • [27] Hybrid maximum-likelihood estimation for frequency offset correction in OFDM systems
    Chen, CC
    Lin, JS
    VTC2005-FALL: 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE, 1-4, PROCEEDINGS, 2005, : 171 - 175
  • [28] Pilot-Assisted Maximum-Likelihood Estimation for Underwater Acoustic Communication
    Kumar, Anand
    Kumar, Prashant
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [29] Hardware Acceleration of Maximum-Likelihood Angle Estimation for Automotive MIMO Radars
    Meinl, Frank
    Kunert, Martin
    Blume, Holger
    PROCEEDINGS OF THE 2016 CONFERENCE ON DESIGN AND ARCHITECTURES FOR SIGNAL & IMAGE PROCESSING, 2016, : 168 - 175
  • [30] Design and Implementation of an On-Demand Maximum-Likelihood Sequence Estimation (MLSE)
    Meybodi, Mohammad Emami
    Gomez, Hector
    Lu, Yu-Chun
    Shakiba, Hossein
    Sheikholeslami, Ali
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2022, 3 : 97 - 108