Functional maximum-likelihood estimation of ARH(p) models

被引:23
|
作者
Ruiz-Medina, M. D. [1 ]
Salmeron, R. [2 ]
机构
[1] Univ Granada, Dept Estadist & Invest Operat, E-18071 Granada, Spain
[2] Univ Granada, Dept Metodos Cuantitativos Econ & Empresa, Granada 18011, Spain
关键词
Autoregressive Hilbertian models; Dimension reduction; Finite-dimensional approximation; Functional parameters; Maximum-likelihood estimation; Singular value decomposition; Spatial functional data sequence; GENE-EXPRESSION DATA; SINGULAR-VALUE DECOMPOSITION; AUTOREGRESSIVE MODELS; LONGITUDINAL DATA; CLASSIFICATION; CONVERGENCE; OPERATOR;
D O I
10.1007/s00477-009-0306-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.
引用
收藏
页码:131 / 146
页数:16
相关论文
共 50 条
  • [1] Functional maximum-likelihood estimation of ARH(p) models
    M. D. Ruiz-Medina
    R. Salmerón
    Stochastic Environmental Research and Risk Assessment, 2010, 24 : 131 - 146
  • [2] EXPONENTIAL SMOOTHING - ESTIMATION BY MAXIMUM-LIKELIHOOD
    BROZE, L
    MELARD, G
    JOURNAL OF FORECASTING, 1990, 9 (05) : 445 - 455
  • [3] Analyticity, Convergence, and Convergence Rate of Recursive Maximum-Likelihood Estimation in Hidden Markov Models
    Tadic, Vladislav B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (12) : 6406 - 6432
  • [4] Maximum-likelihood symmetric α-stable parameter estimation
    Bodenschatz, JS
    Nikias, CL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1382 - 1384
  • [5] Maximum-Likelihood Estimation for Indicator Dilution Analysis
    Kuenen, Maarten P. J.
    Herold, Ingeborg H. F.
    Korsten, Hendrikus H. M.
    de la Rosette, Jean J. M. C. H.
    Wijkstra, Hessel
    Mischi, Massimo
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) : 821 - 831
  • [6] Maximum-likelihood estimation of phase and frequency of MPSK signals
    Taich, D
    Bar-David, I
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2652 - 2655
  • [7] Maximum-likelihood attitude estimation using GPS signals
    Roncagliolo, P. A.
    Garcia, J. G.
    Mercader, P. I.
    Fuhrmann, D. R.
    Muravchik, C. H.
    DIGITAL SIGNAL PROCESSING, 2007, 17 (06) : 1089 - 1100
  • [8] PERFORMANCE BREAKDOWN PREDICTION FOR MAXIMUM-LIKELIHOOD DOA ESTIMATION
    Abramovich, Yuri
    Johnson, Ben
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2594 - 2597
  • [9] Improved maximum-likelihood estimation in a regression model with general parametrization
    Lemonte, Artur J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (08) : 1027 - 1037
  • [10] Multiframe Maximum-Likelihood Tag Estimation for RFID Anticollision Protocols
    Vales-Alonso, Javier
    Bueno-Delgado, Victoria
    Egea-Lopez, Esteban
    Gonzalez-Castano, Francisco J.
    Alcaraz, Juan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2011, 7 (03) : 487 - 496