Universal edge scaling in random partitions

被引:11
|
作者
Kimura, Taro [1 ]
Zahabi, Ali [1 ]
机构
[1] Univ Bourgogne Franche Comte, Inst Math Bourgogne, Dijon, France
关键词
Random partition; Universal fluctuation; Multicritical point; Airy kernel; Tracy-Widom distribution; Gauge theory; PHASE-TRANSITION; RANDOM MATRICES; DISTRIBUTIONS; FLUCTUATIONS; ASYMPTOTICS;
D O I
10.1007/s11005-021-01389-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the universal edge scaling limit of random partitions with the infinite-parameter distribution called the Schur measure. We explore the asymptotic behavior of the wave function, which is a building block of the corresponding kernel, based on the Schrodinger-type differential equation. We show that the wave function is in general asymptotic to the Airy function and its higher-order analogs in the edge scaling limit. We construct the corresponding higher-order Airy kernel and the Tracy-Widom distribution from the wave function in the scaling limit and discuss its implication to the multicritical phase transition in the large-size matrix model. We also discuss the limit shape of random partitions through the semi-classical analysis of the wave function.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Universal edge scaling in random partitions
    Taro Kimura
    Ali Zahabi
    Letters in Mathematical Physics, 2021, 111
  • [2] Universal scaling and criticality of extremes in random matrix theory
    Saber, Sina
    Saberi, Abbas Ali
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [3] Unitary matrix models and random partitions: Universality and multi-criticality
    Kimura, Taro
    Zahabi, Ali
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [4] On random stable partitions
    Pittel, Boris
    INTERNATIONAL JOURNAL OF GAME THEORY, 2019, 48 (02) : 433 - 480
  • [5] On random stable partitions
    Boris Pittel
    International Journal of Game Theory, 2019, 48 : 433 - 480
  • [6] Universal scaling of higher-order spacing ratios in Gaussian random matrices
    Bhosale, Udaysinh T.
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [7] Random partitions in statistical mechanics
    Ercolani, Nicholas M.
    Jansen, Sabine
    Ueltschi, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [8] Matrix models for random partitions
    Alexandrov, A.
    NUCLEAR PHYSICS B, 2011, 851 (03) : 620 - 650
  • [9] Potential, value, and random partitions
    Casajus, Andre
    ECONOMICS LETTERS, 2014, 125 (02) : 164 - 166
  • [10] Random partitions by semigroup methods
    Hirth, U
    Ressel, P
    SEMIGROUP FORUM, 1999, 59 (01) : 126 - 140