Influence of gas flow on thermal field and stress during growth of sapphire single crystal using Kyropoulos method
被引:3
作者:
Li Jinquan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R ChinaBeijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Li Jinquan
[1
]
Su Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Su Xiaoping
Na, Mujilatu
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Na, Mujilatu
Yang Hai
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Yang Hai
Li Jianmin
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Li Jianmin
Yu Yunqi
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Yu Yunqi
Mi Jianjun
论文数: 0引用数: 0
h-index: 0
机构:Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
Mi Jianjun
机构:
[1] Beijing Guojing Infrared Opt Technol Co Ltd, Gen Res Inst NonFerrous Met, Beijing 100088, Peoples R China
[2] 205 Res Inst China Weapon Ind, Xian 710065, Peoples R China
来源:
RARE METALS
|
2006年
/
25卷
关键词:
gas convection;
thermal field;
von Mises stress;
sapphire single crystal;
numerical simulation;
D O I:
10.1016/S1001-0521(08)60094-7
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The professional modeling software package CrysVUn was employed to study the process of a large sapphire single crystal growth using Kyropoulos method. The influence of gas pressure on thermal field, solid-liquid interface shape, gas velocity field and von Mises stress were studied for the first time. It is found that the root of the seed melt when gas pressure equals to one atmosphere or more than one atmosphere, especially during the seeding period, this result is consistent with the experimental observation, and this paper presents three ways to solve this problem. The temperature gradient and stress decreases significantly as the gas pressure increases. The convexity of the solid-liquid interface slightly increases when the gas pressure increases. Numerical analysis was used to optimize the hot zone design.