A multi-objective feature selection method based on bacterial foraging optimization

被引:13
|
作者
Niu, Ben [1 ]
Yi, Wenjie [1 ]
Tan, Lijing [1 ]
Geng, Shuang [1 ]
Wang, Hong [1 ]
机构
[1] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Multi-objective optimization; Bacterial foraging optimization; Information exchange mechanism; PARTICLE SWARM OPTIMIZATION; PARAMETER DETERMINATION; MUTUAL INFORMATION; GENETIC ALGORITHM; CLASSIFICATION; NETWORK;
D O I
10.1007/s11047-019-09754-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection plays an important role in data preprocessing. The aim of feature selection is to recognize and remove redundant or irrelevant features. The key issue is to use as few features as possible to achieve the lowest classification error rate. This paper formulates feature selection as a multi-objective problem. In order to address feature selection problem, this paper uses the multi-objective bacterial foraging optimization algorithm to select the feature subsets and k-nearest neighbor algorithm as the evaluation algorithm. The wheel roulette mechanism is further introduced to remove duplicated features. Four information exchange mechanisms are integrated into the bacteria-inspired algorithm to avoid the individuals getting trapped into the local optima so as to achieve better results in solving high-dimensional feature selection problem. On six small datasets and ten high-dimensional datasets, comparative experiments with different conventional wrapper methods and several evolutionary algorithms demonstrate the superiority of the proposed bacteria-inspired based feature selection method.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 50 条
  • [1] A multi-objective feature selection method based on bacterial foraging optimization
    Ben Niu
    Wenjie Yi
    Lijing Tan
    Shuang Geng
    Hong Wang
    Natural Computing, 2021, 20 : 63 - 76
  • [2] Multi-objective bacterial foraging optimization
    Niu, Ben
    Wang, Hong
    Wang, Jingwen
    Tan, Lijing
    NEUROCOMPUTING, 2013, 116 : 336 - 345
  • [3] Multi-objective Optimization Based Feature Selection Using Correlation
    Das, Rajib
    Nath, Rahul
    Shukla, Amit K.
    Muhuri, Pranab K.
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2022, PT II, 2022, 13726 : 325 - 336
  • [4] Research on Feature Selection of Multi-Objective Optimization
    Zhang, Mengting
    Du, Jianqiang
    Luo, Jigen
    Nie, Bin
    Xiong, Wangping
    Liu, Ming
    Zhao, Shuhan
    Computer Engineering and Applications, 2024, 59 (03) : 23 - 32
  • [5] Multi-Colony Bacterial Foraging Algorithm for Multi-Objective Optimization
    Shao, Yichuan
    Tian, Liwei
    Jin, Wen
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2013, 7 (03): : 2109 - 2116
  • [6] A Multi-label Feature Selection Algorithm Based on Multi-objective Optimization
    Yin, Jing
    Tao, Tengfei
    Xu, Jianhua
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [7] A multi-objective feature selection approach based on chemical reaction optimization
    Qiu, Jianfeng
    Xiang, Xiaoshu
    Wang, Chao
    Zhang, Xingyi
    APPLIED SOFT COMPUTING, 2021, 112
  • [8] A multi-objective optimization algorithm for feature selection problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 1845 - 1863
  • [9] A multi-objective optimization algorithm for feature selection problems
    Benyamin Abdollahzadeh
    Farhad Soleimanian Gharehchopogh
    Engineering with Computers, 2022, 38 : 1845 - 1863
  • [10] A multi-objective optimization algorithm for feature selection problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Engineering with Computers, 2022, 38 : 1845 - 1863