Γ-CONVERGENCE AND RELAXATIONS FOR GRADIENT FLOWS IN METRIC SPACES: A MINIMIZING MOVEMENT APPROACH

被引:5
作者
Fleissner, Florentine [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Gradient flows; minimizing movements; Gamma-convergence; relaxation; curves of maximal slope; HILBERT;
D O I
10.1051/cocv/2017035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present new abstract results on the interrelation between the minimizing movement scheme for gradient flows along a sequence of Gamma-converging functionals and the gradient flow motion for the corresponding limit functional, in a general metric space. We are able to allow a relaxed form of minimization in each step of the scheme, and so we present new relaxation results too.
引用
收藏
页数:29
相关论文
共 40 条
[21]   CONVERGENCE OF A PARTICLE METHOD FOR DIFFUSIVE GRADIENT FLOWS IN ONE DIMENSION [J].
Carrillo, J. A. ;
Patacchini, F. S. ;
Sternberg, P. ;
Wolansky, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) :3708-3741
[22]   A novel relaxed scalar auxiliary variable approach for gradient flows [J].
Liu, Zhengguang ;
He, Qing .
APPLIED MATHEMATICS LETTERS, 2023, 141
[23]   A VARIATIONAL FORMULATION OF THE BDF2 METHOD FOR METRIC GRADIENT FLOWS [J].
Matthes, Daniel ;
Plazotta, Simon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01) :145-172
[24]   Metric gradient flows with state dependent functionals: The Nash-MFG equilibrium flows and their numerical schemes [J].
Turinici, Gabriel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 165 :163-181
[25]   NONLINEAR DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS AS GRADIENT FLOWS IN WASSERSTEIN SPACES [J].
Lisini, Stefano .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :712-740
[26]   CONVERGENCE AND ERROR ANALYSIS FOR THE SCALAR AUXILIARY VARIABLE (SAV) SCHEMES TO GRADIENT FLOWS [J].
Shen, Jie ;
Xu, Jie .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) :2895-2912
[27]   The scalar auxiliary variable (SAV) approach for gradient flows [J].
Shen, Jie ;
Xu, Jie ;
Yang, Jiang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 :407-416
[28]   Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces [J].
Nakajo, Kazuhide .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :251-258
[29]   Variational approach to coarse-graining of generalized gradient flows [J].
Manh Hong Duong ;
Lamacz, Agnes ;
Peletier, Mark A. ;
Sharma, Upanshu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
[30]   ENERGY STABILITY AND CONVERGENCE OF SAV BLOCK-CENTERED FINITE DIFFERENCE METHOD FOR GRADIENT FLOWS [J].
Li, Xiaoli ;
Shen, Jie ;
Rui, Hongxing .
MATHEMATICS OF COMPUTATION, 2019, 88 (319) :2047-2068