Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation

被引:42
作者
Guo, Sijin [1 ,2 ,3 ,4 ]
Xu, Congcong [1 ,2 ,3 ,4 ]
Yin, Hongran [1 ,2 ,3 ,4 ]
Hill, Jordan [5 ]
Pi, Fengmei [5 ]
Guo, Peixuan [1 ,2 ,3 ,4 ]
机构
[1] Ohio State Univ, Ctr RNA Nanobiotechnol & Nanomed, Columbus, OH 43210 USA
[2] Ohio State Univ, Div Pharmaceut & Pharmacol, Coll Pharm, Columbus, OH 43210 USA
[3] Ohio State Univ, Dorothy M Davis Heart & Lung Res Inst, Columbus, OH 43210 USA
[4] Ohio State Univ, James Comprehens Canc Ctr, Coll Med, Columbus, OH 43210 USA
[5] ExonanoRNA LLC, Columbus, OH USA
关键词
biodistribution; immune response; immunomodulation; immunostimulation; nanobiotechnology; RNA nanoparticle; RNA nanostructure; RNA nanotechnology; IN-VIVO; CRYSTAL-STRUCTURE; EMERGING FIELD; PROTEIN CORONA; BREAST-CANCER; T-CELL; DELIVERY; RECOGNITION; DRUGS; PRNA;
D O I
10.1002/wnan.1582
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The past decade has shown exponential growth in the field of RNA nanotechnology. The rapid advances of using RNA nanoparticles for biomedical applications, especially targeted cancer therapy, suggest its potential as a new generation of drug. After the first milestone of small molecule drugs and the second milestone of antibody drugs, it was predicted that RNA drugs, either RNA itself or chemicals/ligands that target RNA, will be the third milestone in drug development. Thus, a comprehensive assessment of the current therapeutic RNA nanoparticles is urgently needed to meet the drug evaluation criteria. Specifically, the pharmacological and immunological profiles of RNA nanoparticles need to be systematically studied to provide insights in rational design of RNA-based therapeutics. By virtue of its programmability and biocompatibility, RNA molecules can be designed to construct sophisticated nanoparticles with versatile functions/applications and highly tunable physicochemical properties. This intrinsic characteristic allows the systemic study of the effects of various properties of RNA nanoparticles on their in vivo behaviors such as cancer targeting and immune responses. This review will focus on the recent progress of RNA nanoparticles in cancer targeting, and summarize the effects of common physicochemical properties such as size and shape on the RNA nanoparticles' biodistribution and immunostimulation profiles. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
引用
收藏
页数:18
相关论文
共 123 条
[11]   TLR8-driven IL-12-dependent Reciprocal and Synergistic Activation of NK Cells and Monocytes by Immunostimulatory RNA [J].
Berger, Michael ;
Ablasser, Andrea ;
Kim, Sarah ;
Bekerejian-Ding, Isabelle ;
Giese, Thomas ;
Endres, Stefan ;
Hornung, Veit ;
Hartmann, Gunther .
JOURNAL OF IMMUNOTHERAPY, 2009, 32 (03) :262-271
[12]   RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign [J].
Bindewald, Eckart ;
Hayes, Robert ;
Yingling, Yaroslava G. ;
Kasprzak, Wojciech ;
Shapiro, Bruce A. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D392-D397
[13]   Multistrand RNA Secondary Structure Prediction and Nanostructure Design Including Pseudoknots [J].
Bindewald, Eckart ;
Afonin, Kirill ;
Jaeger, Luc ;
Shapiro, Bruce A. .
ACS NANO, 2011, 5 (12) :9542-9551
[14]   Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology [J].
Binzel, Daniel W. ;
Shu, Yi ;
Li, Hui ;
Sun, Meiyan ;
Zhang, Qunshu ;
Shu, Dan ;
Guo, Bin ;
Guo, Peixuan .
MOLECULAR THERAPY, 2016, 24 (07) :1267-1277
[15]   Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles [J].
Boerneke, Mark A. ;
Dibrov, Sergey M. ;
Hermann, Thomas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4097-4100
[16]   Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response [J].
Bourquin, Carole ;
Schmidt, Laura ;
Hornung, Veit ;
Wurzenberger, Cornelia ;
Anz, David ;
Sandholzer, Nadja ;
Schreiber, Susanne ;
Voelkl, Andreas ;
Hartmann, Gunther ;
Endres, Stefan .
BLOOD, 2007, 109 (07) :2953-2960
[17]   Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro [J].
Broering, Ruth ;
Real, Catherine I. ;
John, Matthias J. ;
Jahn-Hofmann, Kerstin ;
Ickenstein, Ludger M. ;
Kleinehr, Kathrin ;
Paul, Andreas ;
Gibbert, Kathrin ;
Dittmer, Ulf ;
Gerken, Guido ;
Schlaak, Joerg F. .
INTERNATIONAL IMMUNOLOGY, 2014, 26 (01) :35-46
[18]   Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology [J].
Bui, My N. ;
Johnson, M. Brittany ;
Viard, Mathias ;
Satterwhite, Emily ;
Martins, Angelica N. ;
Li, Zhihai ;
Marriott, Ian ;
Afonin, Kirill A. ;
Khisamutdinov, Emil F. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2017, 13 (03) :1137-1146
[19]   Nanomaterials and nanoparticles: Sources and toxicity [J].
Buzea, Cristina ;
Pacheco, Ivan I. ;
Robbie, Kevin .
BIOINTERPHASES, 2007, 2 (04) :MR17-MR71
[20]  
Chen FF, 2017, NAT NANOTECHNOL, V12, P387, DOI [10.1038/nnano.2016.269, 10.1038/NNANO.2016.269]