Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation

被引:42
作者
Guo, Sijin [1 ,2 ,3 ,4 ]
Xu, Congcong [1 ,2 ,3 ,4 ]
Yin, Hongran [1 ,2 ,3 ,4 ]
Hill, Jordan [5 ]
Pi, Fengmei [5 ]
Guo, Peixuan [1 ,2 ,3 ,4 ]
机构
[1] Ohio State Univ, Ctr RNA Nanobiotechnol & Nanomed, Columbus, OH 43210 USA
[2] Ohio State Univ, Div Pharmaceut & Pharmacol, Coll Pharm, Columbus, OH 43210 USA
[3] Ohio State Univ, Dorothy M Davis Heart & Lung Res Inst, Columbus, OH 43210 USA
[4] Ohio State Univ, James Comprehens Canc Ctr, Coll Med, Columbus, OH 43210 USA
[5] ExonanoRNA LLC, Columbus, OH USA
关键词
biodistribution; immune response; immunomodulation; immunostimulation; nanobiotechnology; RNA nanoparticle; RNA nanostructure; RNA nanotechnology; IN-VIVO; CRYSTAL-STRUCTURE; EMERGING FIELD; PROTEIN CORONA; BREAST-CANCER; T-CELL; DELIVERY; RECOGNITION; DRUGS; PRNA;
D O I
10.1002/wnan.1582
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The past decade has shown exponential growth in the field of RNA nanotechnology. The rapid advances of using RNA nanoparticles for biomedical applications, especially targeted cancer therapy, suggest its potential as a new generation of drug. After the first milestone of small molecule drugs and the second milestone of antibody drugs, it was predicted that RNA drugs, either RNA itself or chemicals/ligands that target RNA, will be the third milestone in drug development. Thus, a comprehensive assessment of the current therapeutic RNA nanoparticles is urgently needed to meet the drug evaluation criteria. Specifically, the pharmacological and immunological profiles of RNA nanoparticles need to be systematically studied to provide insights in rational design of RNA-based therapeutics. By virtue of its programmability and biocompatibility, RNA molecules can be designed to construct sophisticated nanoparticles with versatile functions/applications and highly tunable physicochemical properties. This intrinsic characteristic allows the systemic study of the effects of various properties of RNA nanoparticles on their in vivo behaviors such as cancer targeting and immune responses. This review will focus on the recent progress of RNA nanoparticles in cancer targeting, and summarize the effects of common physicochemical properties such as size and shape on the RNA nanoparticles' biodistribution and immunostimulation profiles. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
引用
收藏
页数:18
相关论文
共 123 条
[1]   Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery [J].
Abdelmawla, Sherine ;
Guo, Songchuan ;
Zhang, Limin ;
Pulukuri, Sai M. ;
Patankar, Prithviraj ;
Conley, Patrick ;
Trebley, Joseph ;
Guo, Peixuan ;
Li, Qi-Xiang .
MOLECULAR THERAPY, 2011, 19 (07) :1312-1322
[2]   Specific RNA self-assembly with minimal paranemic motifs [J].
Afonin, Kirill A. ;
Cieply, Dennis J. ;
Leontis, Neocles B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :93-102
[3]   Triggering of RNA Interference with RNA-RNA, RNA-DNA, and DNA-RNA Nanoparticles [J].
Afonin, Kirill A. ;
Viard, Mathias ;
Kagiampakis, Ioannis ;
Case, Christopher L. ;
Dobrovolskaia, Marina A. ;
Hofmann, Jen ;
Vrzak, Ashlee ;
Kireeva, Maria ;
Kasprzak, Wojciech K. ;
KewalRamani, Vineet N. ;
Shapiro, Bruce A. .
ACS NANO, 2015, 9 (01) :251-259
[4]   Multifunctional RNA Nanoparticles [J].
Afonin, Kirill A. ;
Viard, Mathias ;
Koyfman, Alexey Y. ;
Martins, Angelica N. ;
Kasprzak, Wojciech K. ;
Panigaj, Martin ;
Desai, Ravi ;
Santhanam, Arti ;
Grabow, Wade W. ;
Jaeger, Luc ;
Heldman, Eliahu ;
Reiser, Jakob ;
Chiu, Wah ;
Freed, Eric O. ;
Shapiro, Bruce A. .
NANO LETTERS, 2014, 14 (10) :5662-5671
[5]  
Afonin KA, 2010, NAT NANOTECHNOL, V5, P676, DOI [10.1038/NNANO.2010.160, 10.1038/nnano.2010.160]
[6]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124]
[7]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[8]   Elasticity of Nanopartides Influences Their Blood Circulation, Phagocytosis, Endocytosis, and Targeting [J].
Anselmo, Aaron C. ;
Zhang, Mengwen ;
Kumar, Sunny ;
Vogus, Douglas R. ;
Menegatti, Stefano ;
Helgeson, Matthew E. ;
Mitragotri, Samir .
ACS NANO, 2015, 9 (03) :3169-3177
[9]   Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology [J].
Astruc, Didier .
NATURE CHEMISTRY, 2012, 4 (04) :255-267
[10]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29