Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism

被引:43
作者
Wang, Xiaofei [1 ]
Wei, Hehong [1 ]
Mao, Xuemei [1 ]
Liu, Jin [1 ]
机构
[1] Peking Univ, Coll Engn, Lab Algae Biotechnol & Innovat, Beijing 100871, Peoples R China
基金
中国博士后科学基金;
关键词
Lipid droplet; Caleosin; Proteomics; Triacylglycerol; Lipase; OIL BODIES; TRIACYLGLYCEROL ACCUMULATION; CHLAMYDOMONAS-REINHARDTII; BIOFUEL PRODUCTION; TAG ACCUMULATION; ASTAXANTHIN; EXPRESSION; ACYLTRANSFERASES; OLEOSIN; CAROTENOIDS;
D O I
10.1016/j.gpb.2019.01.003
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Chromochloris zofingiensis represents an industrially relevant and unique green alga, given its capability of synthesizing triacylglycerol (TAG) and astaxanthin simultaneously for storage in lipid droplets (LDs). To further decipher lipid metabolism, the nitrogen deprivation (ND)-induced LDs from C. zofingiensis were isolated, purified, and subjected to proteomic analysis. Intriguingly, many C. zofingiensis LD proteins had no orthologs present in LD proteome of the model alga Chlamydomonas reinhardtii. Seven novel LD proteins (i.e., two functionally unknown proteins, two caleosins, two lipases, and one L-gulonolactone oxidase) and the major LD protein (MLDP), which were all transcriptionally up-regulated by ND, were selected for further investigation. Heterologous expression in yeast demonstrated that all tested LD proteins were localized to LDs and all except the two functionally unknown proteins enabled yeast to produce more TAG. MLDP could restore the phenotype of mldp mutant strain and enhance TAG synthesis in wild-type strain of C. reinhardtii. Although MLDP and caleosins had a comparable abundance in LDs, they responded distinctly to ND at the transcriptional level. The two lipases, instead of functioning as TAG lipases, likely recycled polar lipids to support TAG synthesis. For the first time, we reported that L-gulonolactone oxidase was abundant in LDs and facilitated TAG accumulation. Moreover, we also proposed a novel working model for C. zofingiensis LDs. Taken together, our work unravels the unique characteristics of C. zofingiensis LDs and provides insights into algal LD biogenesis and TAG synthesis, which would facilitate genetic engineering of this alga for TAG improvement.
引用
收藏
页码:260 / 272
页数:13
相关论文
共 72 条
[1]   Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source [J].
Athenstaedt, K ;
Jolivet, P ;
Boulard, C ;
Zivy, M ;
Negroni, L ;
Nicaud, JM ;
Chardot, T .
PROTEOMICS, 2006, 6 (05) :1450-1459
[2]   Dynamic activity of lipid droplets: Protein phosphorylation and GTP-Mediated protein translocation [J].
Bartzt, Rene ;
Zehmer, John K. ;
Zhu, Meifang ;
Chen, Yue ;
Serrero, Ginette ;
Zhao, Yingming ;
Liu, Pingsheng .
JOURNAL OF PROTEOME RESEARCH, 2007, 6 (08) :3256-3265
[3]   Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications [J].
Bhatla, S. C. ;
Kaushik, V. ;
Yadav, M. K. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :293-300
[4]   Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas [J].
Boyle, Nanette R. ;
Page, Mark Dudley ;
Liu, Bensheng ;
Blaby, Ian K. ;
Casero, David ;
Kropat, Janette ;
Cokus, Shawn J. ;
Hong-Hermesdorf, Anne ;
Shaw, Johnathan ;
Karpowicz, Steven J. ;
Gallaher, Sean D. ;
Johnson, Shannon ;
Benning, Christoph ;
Pellegrini, Matteo ;
Grossman, Arthur ;
Merchant, Sabeeha S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (19) :15811-15825
[5]   Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes [J].
Brasaemle, DL ;
Dolios, G ;
Shapiro, L ;
Wang, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (45) :46835-46842
[6]   Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis [J].
Brasaemle, DL ;
Rubin, B ;
Harten, IA ;
Gruia-Gray, J ;
Kimmel, AR ;
Londos, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38486-38493
[7]   Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation [J].
Cai, Yingqi ;
Goodman, Joel M. ;
Pyc, Michal ;
Mullen, Robert T. ;
Dyer, John M. ;
Chapman, Kent D. .
PLANT CELL, 2015, 27 (09) :2616-2636
[8]   Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds [J].
Chen, JCF ;
Tsai, CCY ;
Tzen, JTC .
PLANT AND CELL PHYSIOLOGY, 1999, 40 (10) :1079-1086
[9]   Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin [J].
Chen, MCM ;
Chyan, CL ;
Lee, TTT ;
Huang, SH ;
Tzen, JTC .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (12) :3982-3987
[10]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306