Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation

被引:30
作者
Perez-San Lazaro, Rafael [1 ,2 ]
Salgado, Ivan [3 ]
Chairez, Isaac [1 ,2 ]
机构
[1] Inst Politecn Nacl, Med Robot & Biosignal Proc Lab, Unidad Profes Interdisciplinaria Biotecnol, ZC, Mexico City 07340, DF, Mexico
[2] Inst Tecnol Estudios Super Monterrey, Escuela Ingn & Ciencias, Campus Guadalajara, Zapopan, Mexico
[3] Inst Politecn Nacl, Ctr Innovac & Desarrollo Tecnol Computo, ZC, Mexico City 07700, DF, Mexico
关键词
Decentralized control; Super-twisting algorithm; Lower limb exoskeleton; Adaptive control; Active orthosis; DRIVEN;
D O I
10.1016/j.isatra.2020.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study describes the design, instrumentation and control of an exoskeleton for lower limb children rehabilitation with nine degrees of freedom. Three degrees of freedom in each leg exert the movements of hip, knee and ankle in the sagittal plane, and three control the drive track system composed by a caterpillar-like robot. The control scheme presents a model free decentralized output feedback adaptive high-order sliding mode control to solve the trajectory tracking problem in each degree of freedom of the exoskeleton. A high order sliding mode differentiator estimates the unmeasured states and, by means of a dynamical state extension, it approximates the unknown dynamical model of the exoskeleton. A second-order adaptive sliding mode controller based on the super-twisting algorithm drives the exoskeleton articulations to track the proposed reference trajectories, inducing an ultimate boundedness for the tracking error. Numerical and experimental simulation results demonstrate the effect of the adaptive gain on the super-twisting control design. Such evaluations confirmed the superior tracking performance forced by the adaptive law for the controller with a smaller chattering amplitude and smaller mean tracking error. (C) 2020 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 228
页数:11
相关论文
共 44 条
[11]  
Drakunov S, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P3376, DOI 10.1109/CDC.1995.479009
[12]  
Fellag R, 2017, 2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B)
[13]   Application of EMG signals for controlling exoskeleton robots [J].
Fleischer, Christian ;
Wege, Andreas ;
Kondak, Konstantin ;
Hommel, Guenter .
BIOMEDIZINISCHE TECHNIK, 2006, 51 (5-6) :314-319
[14]  
Fridman L, 2002, CONTROL ENGN SER, V11, P53
[15]  
Ghorbel F, 1998, J ROBOTIC SYST, V15, P17, DOI 10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO
[16]  
2-V
[17]  
Guendouzi A, 2013, 9 INT C AUT AUT SYST
[18]  
Jouppila V A., 2009, ASME INT MECH ENG C, V10, DOI [10.1115/IMECE2009-13024, DOI 10.1115/IMECE2009-13024]
[19]  
Lebastard Vincent, 2008, Proceedings of the 46th IEEE Conference on Decision and Control, P5144
[20]   Design and Evaluation of a Remote Actuated Finger Exoskeleton Using Motion-Copying System for Tendon Rehabilitation [J].
Lemerle, Simon ;
Nozaki, Takahiro ;
Ohnishi, Kouhei .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (11) :5167-5177