Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation

被引:30
作者
Perez-San Lazaro, Rafael [1 ,2 ]
Salgado, Ivan [3 ]
Chairez, Isaac [1 ,2 ]
机构
[1] Inst Politecn Nacl, Med Robot & Biosignal Proc Lab, Unidad Profes Interdisciplinaria Biotecnol, ZC, Mexico City 07340, DF, Mexico
[2] Inst Tecnol Estudios Super Monterrey, Escuela Ingn & Ciencias, Campus Guadalajara, Zapopan, Mexico
[3] Inst Politecn Nacl, Ctr Innovac & Desarrollo Tecnol Computo, ZC, Mexico City 07700, DF, Mexico
关键词
Decentralized control; Super-twisting algorithm; Lower limb exoskeleton; Adaptive control; Active orthosis; DRIVEN;
D O I
10.1016/j.isatra.2020.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study describes the design, instrumentation and control of an exoskeleton for lower limb children rehabilitation with nine degrees of freedom. Three degrees of freedom in each leg exert the movements of hip, knee and ankle in the sagittal plane, and three control the drive track system composed by a caterpillar-like robot. The control scheme presents a model free decentralized output feedback adaptive high-order sliding mode control to solve the trajectory tracking problem in each degree of freedom of the exoskeleton. A high order sliding mode differentiator estimates the unmeasured states and, by means of a dynamical state extension, it approximates the unknown dynamical model of the exoskeleton. A second-order adaptive sliding mode controller based on the super-twisting algorithm drives the exoskeleton articulations to track the proposed reference trajectories, inducing an ultimate boundedness for the tracking error. Numerical and experimental simulation results demonstrate the effect of the adaptive gain on the super-twisting control design. Such evaluations confirmed the superior tracking performance forced by the adaptive law for the controller with a smaller chattering amplitude and smaller mean tracking error. (C) 2020 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 228
页数:11
相关论文
共 44 条
[1]  
Bartolini G, 1999, LECT NOTES CONTR INF, V247, P329
[2]   Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation [J].
Benitez, Luis Manuel Vaca ;
Tabie, Marc ;
Will, Niels ;
Schmidt, Steffen ;
Jordan, Mathias ;
Kirchner, Elsa Andrea .
JOURNAL OF ROBOTICS, 2013, 2013
[3]   3D printing: the dawn of a new era in manufacturing? [J].
Bogue, Robert .
ASSEMBLY AUTOMATION, 2013, 33 (04) :307-311
[4]  
Boiko IM, 2011, P AMER CONTR CONF, P757
[5]   MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles [J].
Cao, Jinghui ;
Xie, Sheng Quan ;
Das, Raj .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (01) :274-281
[6]  
Cardona C, OB FACTS EUR C OB, V6
[7]   Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches [J].
Chalanga, Asif ;
Kamal, Shyam ;
Fridman, Leonid M. ;
Bandyopadhyay, Bijnan ;
Moreno, Jaime A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3677-3685
[8]  
Chen Gong, 2013, Critical Reviews in Biomedical Engineering, V41, P343
[9]  
Cruz-Zavala E., 2011, Proceedings of 18th IF AC World Congress, P3039, DOI DOI 10.3182/20110828-6-IT-1002.03529
[10]   Mexican anthropometric percentiles for ages 10-18 [J].
Del-Rio-Navarro, B. E. ;
Velazquez-Monroy, O. ;
Santos-Preciado, J. I. ;
Lara-Esqueda, A. ;
Berber, A. ;
Loredo-Abdala, A. ;
Violante-Ortiz, R. ;
Tapia-Conyer, R. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2007, 61 (08) :963-975