Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia

被引:237
作者
Eze, Ugomma C. [1 ,2 ]
Bhaduri, Aparna [1 ,2 ]
Haeussler, Maximilian [3 ]
Nowakowski, Tomasz J. [1 ,4 ]
Kriegstein, Arnold R. [1 ,2 ]
机构
[1] Univ Calif San Francisco UCSF, Dept Neurol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco UCSF, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, San Francisco, CA 94143 USA
[3] Univ Calif Santa Cruz, Genom Inst, Santa Cruz, CA 95064 USA
[4] Univ Calif San Francisco UCSF, Dept Anat, San Francisco, CA USA
基金
英国医学研究理事会;
关键词
NEURAL STEM-CELLS; LINEAGE-RESTRICTION; NERVOUS-SYSTEM; GENE; NEURONS; EXPRESSION; DLK1; DIFFERENTIATION; PROLIFERATION; PERSPECTIVE;
D O I
10.1038/s41593-020-00794-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human cortex comprises diverse cell types that emerge from an initially uniform neuroepithelium that gives rise to radial glia, the neural stem cells of the cortex. To characterize the earliest stages of human brain development, we performed single-cell RNA-sequencing across regions of the developing human brain, including the telencephalon, diencephalon, midbrain, hindbrain and cerebellum. We identify nine progenitor populations physically proximal to the telencephalon, suggesting more heterogeneity than previously described, including a highly prevalent mesenchymal-like population that disappears once neurogenesis begins. Comparison of human and mouse progenitor populations at corresponding stages identifies two progenitor clusters that are enriched in the early stages of human cortical development. We also find that organoid systems display low fidelity to neuroepithelial and early radial glia cell types, but improve as neurogenesis progresses. Overall, we provide a comprehensive molecular and spatial atlas of early stages of human brain and cortical development.
引用
收藏
页码:584 / 594
页数:11
相关论文
共 51 条
[1]   Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure - Remodeling of the neuroepithelium prior to neurogenesis [J].
AakuSaraste, E ;
Hellwig, A ;
Huttner, WB .
DEVELOPMENTAL BIOLOGY, 1996, 180 (02) :664-679
[2]   Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development [J].
Agoston, Zsuzsa ;
Li, Naixin ;
Haslinger, Anja ;
Wizenmann, Andrea ;
Schulte, Dorothea .
BMC DEVELOPMENTAL BIOLOGY, 2012, 12
[3]   Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent [J].
Alzu'bi, Ayman ;
Homman-Ludiye, Jihane ;
Bourne, James A. ;
Clowry, Gavin J. .
CEREBRAL CORTEX, 2019, 29 (04) :1706-1718
[4]   The logic of gene regulatory networks in early vertebrate forebrain patterning [J].
Beccari, Leonardo ;
Marco-Ferreres, Raquel ;
Bovolenta, Paola .
MECHANISMS OF DEVELOPMENT, 2013, 130 (2-3) :95-111
[5]   Id4 is required for the correct timing of neural differentiation [J].
Bedford, L ;
Walker, R ;
Kondo, T ;
van Crüchten, I ;
King, ER ;
Sablitzky, F .
DEVELOPMENTAL BIOLOGY, 2005, 280 (02) :386-395
[6]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[7]   Cell stress in cortical organoids impairs molecular subtype specification [J].
Bhaduri, Aparna ;
Andrews, Madeline G. ;
Mancia Leon, Walter ;
Jung, Diane ;
Shin, David ;
Allen, Denise ;
Jung, Dana ;
Schmunk, Galina ;
Haeussler, Maximilian ;
Salma, Jahan ;
Pollen, Alex A. ;
Nowakowski, Tomasz J. ;
Kriegstein, Arnold R. .
NATURE, 2020, 578 (7793) :142-+
[8]   The atypical mammalian ligand Delta-like homologue 1 (Dlk1) can regulate Notch signalling in Drosophila [J].
Bray, Sarah J. ;
Takada, Shuji ;
Harrison, Emma ;
Shen, Shing-Chuan ;
Ferguson-Smith, Anne C. .
BMC DEVELOPMENTAL BIOLOGY, 2008, 8
[9]   Neural Stem Cells: Historical Perspective and Future Prospects [J].
Breunig, Joshua J. ;
Haydar, Tank F. ;
Rakic, Pasko .
NEURON, 2011, 70 (04) :614-625
[10]   The first neurons of the human cerebral cortex [J].
Bystron, Irina ;
Rakic, Pasko ;
Molnar, Zoltan ;
Blakemore, Colin .
NATURE NEUROSCIENCE, 2006, 9 (07) :880-886