Risk Assessment of Atrial Fibrillation: a Failure Prediction Approach
被引:0
作者:
Milosevic, Jelena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Milosevic, Jelena
[1
]
Dittrich, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Dittrich, Andreas
[1
]
Ferrante, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Ferrante, Alberto
[1
]
Malek, Miroslaw
论文数: 0引用数: 0
h-index: 0
机构:
Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Malek, Miroslaw
[1
]
Quiros, Camilo Rojas
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Embedded Syst Lab, CH-1015 Lausanne, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Quiros, Camilo Rojas
[2
]
Braojos, Ruben
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Embedded Syst Lab, CH-1015 Lausanne, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Braojos, Ruben
[2
]
Ansaloni, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Embedded Syst Lab, CH-1015 Lausanne, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Ansaloni, Giovanni
[2
]
Atienza, David
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Polytech Fed Lausanne, Embedded Syst Lab, CH-1015 Lausanne, SwitzerlandUniv Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
Atienza, David
[2
]
机构:
[1] Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
We present a methodology for identifying patients who have experienced Paroxysmal Atrial Fibrillation (PAF) among a given subject population. Our work is intended as an initial step towards the design of an unobtrusive portable system for concurrent detection and monitoring of chronic cardiac conditions. The methodology comprises two stages: off-line training and on-line analysis. During training the most significant features are selected using machine learning methods, without relying on a manual selection based on previous knowledge. Analysis is done in two phases: feature extraction and detection of PAF patients. Light-weight algorithms are employed in the feature extraction phase, allowing the on-line implementation of this step on wearable sensor nodes. The detection phase employs techniques borrowed from the field of failure prediction. While these algorithms have found extensive application in diverse scenarios, their application to automated cardiac analysis has not been sufficiently investigated to date. The proposed methodology is able to correctly classify 68% of the test records in the PAF Prediction Challenge database, performing comparably to state of the art off-line algorithms. Nonetheless, the proposed method employs embedded signal processing for the critical feature extraction step, which is executed on resource-constrained body sensor nodes. This allows for a real-time and energy-efficient implementation.
引用
收藏
页码:801 / 804
页数:4
相关论文
共 7 条
[1]
Braojos R, 2012, IEEE INT C BIOINF BI, P99, DOI 10.1109/BIBE.2012.6399715