3D Cardiac Segmentation Using Temporal Correlation of Radio Frequency Ultrasound Data

被引:0
作者
Nillesen, Maartje M. [1 ]
Lopata, Richard G. P. [1 ]
Huisman, Henkjan J. [2 ]
Thijssen, Johan M. [1 ]
Kapusta, Livia [3 ]
de Korte, Chris L. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pediat, Clin Phys Lab, Nijmegen, Netherlands
[2] Dept Radiol, Worcester, MA 01655 USA
[3] Univ Nijmegen Med Ctr, Dept Pediatr Radboud, Pediatr Cardiol, Nijmegen, Netherlands
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS | 2009年 / 5762卷
关键词
IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Semi-automatic segmentation of the myocardium in 3D echo-graphic images may substantially support, clinical diagnosis of heart disease. Particularly in children with congenital heart disease, segmentation should be based on the echo features solely since a priori knowledge on the shape of the heart; cannot be used. Segmentation of echocardiographic images is challenging because of the poor echogenicity contrast between blood and the myocardium in some regions and the inherent speckle noise from randomly backscattered echoes. Phase information present in the radio frequency (rf) ultrasound data might yield useful, additional features in these regions. A semi-3D technique was used to determine maximum temporal cross-correlation values locally from the rf data. To segment the endocardial surface, maximum cross-correlation values were used as additional external force in a deformable model approach and were tested against and combined with adaptive filtered, demodulated rf data. The method was tested on full volume images (Philips, iE33) of four healthy children and evaluated by comparison with contours obtained from manual segmentation.
引用
收藏
页码:927 / +
页数:2
相关论文
共 50 条
  • [41] TEXTURE-BASED GRAPH REGULARIZATION PROCESS FOR 2D AND 3D ULTRASOUND IMAGE SEGMENTATION
    Faucheux, Cyrille
    Olivier, Julien
    Bone, Romuald
    Makris, Pascal
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2333 - 2336
  • [42] 3D Segmentation of the Heart Muscle in Real-Time 3D Echocardiographic Sequences Using Image Statistics
    Nillesen, M. M.
    Lopata, R. G. P.
    Gerrits, I. H.
    Kapusta, L.
    Huisman, H. J.
    Thijssen, J. M.
    De Korte, C. L.
    2006 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-5, PROCEEDINGS, 2006, : 1987 - +
  • [43] Robust variational segmentation of 3D bone CT data with thin cartilage interfaces
    Gangwar, Tarun
    Calder, Jeff
    Takahashi, Takashi
    Bechtold, Joan E.
    Schillinger, Dominik
    MEDICAL IMAGE ANALYSIS, 2018, 47 : 95 - 110
  • [44] AUTOMATIC SEGMENTATION FOR 3D DENTAL RECONSTRUCTION
    Pavaloiu, Ionel-Bujorel
    Goga, Nicolae
    Marin, Iuliana
    Vasilateanu, Andrei
    2015 6TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2015, : 216 - 221
  • [45] Topological filtering for 3D microstructure segmentation
    Patel, Anand, V
    Hou, Tao
    Beltran Rodriguez, Juan D.
    Dey, Tamal K.
    Birnie, Dunbar P.
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 202
  • [46] Probabilistic model for 3D interactive segmentation
    Hershkovich, Tsachi
    Shalmon, Tamar
    Shitrit, Ohad
    Halay, Nir
    Menze, Bjoern H.
    Dolgopyat, Irit
    Kahn, Itamar
    Shelef, Ilan
    Raviv, Tammy Riklin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 47 - 60
  • [47] Deep-DM: Deep-Driven Deformable Model for 3D Image Segmentation Using Limited Data
    Torres, Helena R.
    Oliveira, Bruno
    Fritze, Anne
    Birdir, Cahit
    Rudiger, Mario
    Fonseca, Jaime C.
    Morais, Pedro
    Vilaca, Joao L.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7287 - 7299
  • [48] Semantic object segmentation of 3D scenes using color and shape compatibility
    Yazdi, M
    Zaccarin, A
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IX, PROCEEDINGS: IMAGE, ACOUSTIC, SPEECH AND SIGNAL PROCESSING II, 2002, : 268 - 272
  • [49] Human motion segmentation using collaborative representations of 3D skeletal sequences
    Li, Rui
    Liu, Zhenyu
    Tan, Jianrong
    IET COMPUTER VISION, 2018, 12 (04) : 434 - 442
  • [50] Multi-Parametric Fusion of 3D Power Doppler Ultrasound for Fetal Kidney Segmentation Using Fully Convolutional Neural Networks
    Weerasinghe, Nipuna H.
    Lovell, Nigel H.
    Welsh, Alec W.
    Stevenson, Gordon N.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2050 - 2057