Variational Session-based Recommendation Using Normalizing Flows

被引:12
作者
Zhou, Fan [1 ]
Wen, Zijing [1 ]
Zhang, Kunpeng [2 ]
Trajcevski, Goce [3 ]
Zhong, Ting [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Iowa State Univ, Ames, IA USA
来源
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Session-based recommendation; variational autoencoders; normalizing flows;
D O I
10.1145/3308558.3313615
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a novel generative Session-Based Recommendation (SBR) framework, called VAriational SEssion-based Recommendation (VASER) - a non-linear probabilistic methodology allowing Bayesian inference for flexible parameter estimation of sequential recommendations. Instead of directly applying extended Variational AutoEncoders (VAE) to SBR, the proposed method introduces normalizing flows to estimate the probabilistic posterior, which is more effective than the agnostic presumed prior approximation used in existing deep generative recommendation approaches. VASER explores soft attention mechanism to upweight the important clicks in a session. We empirically demonstrate that the proposed model significantly outperforms several state-of-the-art baselines, including the recently-proposed RNN/VAE-based approaches on real-world datasets.
引用
收藏
页码:3476 / 3482
页数:7
相关论文
共 53 条
[1]  
[Anonymous], ICML
[2]  
[Anonymous], CONTEXT TREE ADAPTIV
[3]  
[Anonymous], 2004, ACM TOIS
[4]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[5]  
Bahuleyan H., 2018, P 27 INT C COMPUTATI, P1672
[6]  
Bowman Samuel R, 2015, P 20 SIGNLL C COMP N, DOI DOI 10.18653/V1/K16-1002
[7]  
Chatzis Sotirios P, 2017, RECSYS
[8]  
Chen TQ, 2012, J MACH LEARN RES, V13, P3619
[9]  
Chen Xi, 2017, ICLR
[10]  
Chen Yifan, 2018, DLRS RECSYS