Critical issues in the formation of quantum computer test structures by ion implantation

被引:18
|
作者
Schenkel, T. [1 ]
Lo, C. C. [2 ]
Weis, C. D. [1 ]
Schuh, A. [1 ]
Persaud, A. [1 ]
Bokor, J. [2 ]
机构
[1] EO Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS | 2009年 / 267卷 / 16期
基金
美国国家科学基金会;
关键词
Ion implantation; Highly charged ions; Quantum computing; HIGHLY-CHARGED IONS; NUCLEAR-SPIN; ENERGY-LOSS; SILICON;
D O I
10.1016/j.nimb.2009.05.061
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO(2)/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, (121)Sb(25+), in SiO(2)/Si is also discussed. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:2563 / 2566
页数:4
相关论文
共 50 条
  • [31] Effect of ion implantation on quantum well infrared photodetectors
    Hatefi-Kargan, N.
    Steenson, D. P.
    Harrison, P.
    Linfield, E. H.
    Khanna, S.
    Chakraborty, S.
    Dean, P.
    Upadhya, P. C.
    Farrer, I.
    Ritchie, D. A.
    Sherliker, B.
    Halsall, M.
    INFRARED PHYSICS & TECHNOLOGY, 2007, 50 (2-3) : 106 - 112
  • [32] Formation of Au nanoparticles in sapphire by using Ar ion implantation and thermal annealing
    Zhou, L. H.
    Zhang, C. H.
    Yang, Y. T.
    Li, B. S.
    Zhang, L. Q.
    Fu, Y. C.
    Zhang, H. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (01): : 58 - 62
  • [33] Computer simulation of SIOX and SIMNI structure formed by ion implantation
    Shi, Zuoyu
    Lin, Luochen
    Zhu, Wenhua
    Hemment, P.L.F.
    Bussmann, V.
    Zou, Shichang
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 1994, 15 (01): : 48 - 54
  • [34] Computer simulation of some aspects of ion implantation in ULSI devices
    Faye, MM
    Benassayag, G
    Martinez, A
    Claverie, A
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1997, 141 (1-4): : 199 - 209
  • [35] Formation of Tesseract Time Crystals on a Quantum Computer
    Sims, Christopher
    CRYSTALS, 2023, 13 (08)
  • [36] Nanostructure formation of SiC using ion implantation and CMP
    Eryu, O
    Abe, K
    Takemoto, N
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 242 (1-2): : 237 - 239
  • [37] The effects of fluorine ion implantation on the formation of SIMOX structure
    Zhu, SY
    Lin, CL
    THIN SOLID FILMS, 1997, 298 (1-2) : 147 - 150
  • [38] Si nanocrystals formation by a new ion implantation device
    Lorusso, A.
    Nassisi, V.
    Velardi, L.
    Congedo, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2008, 266 (10): : 2486 - 2489
  • [39] Formation of macropore nucleation centers in silicon by ion implantation
    E. V. Astrova
    T. N. Vasunkina
    Semiconductors, 2002, 36 : 564 - 567
  • [40] Shallow junction formation by plasma immersion ion implantation
    Shao, JQ
    Jones, EC
    Cheung, NW
    SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3): : 254 - 257