On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere

被引:5
作者
Lei, Li [1 ]
Xu, Hongwei [1 ]
Xu, Zhiyuan [2 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
generalized Chern conjecture; hypersurfaces with constant mean curvature; rigidity theorem; scalar curvature; the second fundamental form;
D O I
10.1007/s11425-020-1841-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a compact hypersurface with constant mean curvature in Sn+1. Denote by H and S the mean curvature and the squared norm of the second fundamental form of M, respectively. We verify that there exists a positive constant gamma(n) depending only on n such that if jHj 6 gamma(n) and fi(n;H) 6 S 6 fi(n;H) + n 18, then S beta (n;H) and M is a Clifford torus. Here, fi (n;H) = n + n3 2(n H2 + n(n 2(n v n2H4 + 4(n 1)H2
引用
收藏
页码:1493 / 1504
页数:12
相关论文
共 36 条
  • [1] [Anonymous], 2012, Differential Geometry: Under the Influence of S. S. Chern
  • [2] Bai ZG., 2004, INTRO RIEMANN GEOMET
  • [3] On the remarkable families of isoparametric hypersurfaces in spherical spaces.
    Cartan, E
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1939, 45 : 335 - 367
  • [4] CHANG SP, 1993, J DIFFER GEOM, V37, P523
  • [5] Chang SP., 1993, COMMUN ANAL GEOM, V1, P71, DOI [DOI 10.4310/CAG.1993.V1.N1.A4, 10.4310/CAG.1993.v1.n1.a4]
  • [6] Cheng Qing Ming, 1990, HIROSHIMA MATH J, V20, P1, DOI DOI 10.32917/HMJ/1206454435
  • [7] Cheng Shiu-Yuen, 1997, TSING HUA LECT GEOME, P59
  • [8] Chern S.S., 1970, FUNCTIONAL ANAL RELA, P59, DOI [DOI 10.1007/978-3-642-25588-5_5, 10.1007/978-3-642-48272-4_2]
  • [9] Chern SS., 1971, BRIEF SURVEY MINIMAL, P43
  • [10] CLOSED 3-DIMENSIONAL HYPERSURFACES WITH CONSTANT MEAN-CURVATURE AND CONSTANT SCALAR CURVATURE
    DEALMEIDA, SC
    BRITO, FGB
    [J]. DUKE MATHEMATICAL JOURNAL, 1990, 61 (01) : 195 - 206