Fibonacci, Golden Ratio, and Vector Bundles

被引:0
作者
Giansiracusa, Noah [1 ]
机构
[1] Bentley Univ, Dept Math Sci, Waltham, MA 02452 USA
关键词
conformal blocks; verlinde formula; fibonacci; golden ratio; vector bundle; moduli of curves;
D O I
10.3390/math9040426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a family of vector bundles over the moduli space of stable curves that, while first appearing in theoretical physics, has been an active topic of study for algebraic geometers since the 1990s. By computing the rank of the exceptional Lie algebra g(2) case of these bundles in three different ways, a family of summation formulas for Fibonacci numbers in terms of the golden ratio is derived.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 17 条
  • [1] [Anonymous], 2019, ON LINE ENCY INTEGER
  • [2] CONFORMAL BLOCKS AND GENERALIZED THETA-FUNCTIONS
    BEAUVILLE, A
    LASZLO, Y
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) : 385 - 419
  • [3] Chern classes of conformal blocks
    Fakhruddin, Najmuddin
    [J]. COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 145 - 176
  • [4] Faltings G., 1994, J. Algebraic Geom, V3, P347
  • [5] Gregoire C, SPACE GEN G2 THETA F
  • [6] The Space of Generalized G2-Theta Functions of Level 1
    Gregoire, Chloe
    Pauly, Christian
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2013, 62 (04) : 857 - 867
  • [7] KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
  • [8] Looijenga E., 2013, Adv. Lect. Math. (ALM), V25, P427
  • [9] Marian A, 2015, CHERN CLASSES VERLIN, P87
  • [10] Counting structures in the Mobius ladder
    McSorley, JP
    [J]. DISCRETE MATHEMATICS, 1998, 184 (1-3) : 137 - 164