Quenched invariance principle for simple random walk on percolation clusters

被引:132
作者
Berger, Noam [1 ]
Biskup, Marek
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1007/s00440-006-0498-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the simple random walk on the (unique) infinite cluster of supercritical bond percolation in Z(d) with d >= 2. We prove that, for almost every percolation configuration, the path distribution of the walk converges weakly to that of non-degenerate, isotropic Brownian motion. Our analysis is based on the consideration of a harmonic deformation of the infinite cluster on which the random walk becomes a square-integrable martingale. The size of the deformation, expressed by the so called corrector, is estimated by means of ergodicity arguments.
引用
收藏
页码:83 / 120
页数:38
相关论文
共 29 条
[1]  
[Anonymous], 1837, LECT PROBABILITY THE
[2]  
Antal P, 1996, ANN PROBAB, V24, P1036
[3]   Random walks on supercritical percolation clusters [J].
Barlow, MT .
ANNALS OF PROBABILITY, 2004, 32 (04) :3024-3084
[4]   The diameter of long-range percolation clusters on finite cycles [J].
Benjamini, I ;
Berger, N .
RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (02) :102-111
[5]   The speed of biased random walk on percolation clusters [J].
Berger, N ;
Gantert, N ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :221-242
[6]   Transience, recurrence and critical behavior for long-range percolation [J].
Berger, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (03) :531-558
[7]   On the scaling of the chemical distance in long-range percolation models [J].
Biskup, M .
ANNALS OF PROBABILITY, 2004, 32 (04) :2938-2977
[8]   DENSITY AND UNIQUENESS IN PERCOLATION [J].
BURTON, RM ;
KEANE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :501-505
[9]  
de Gennes P. G., 1976, La recherche, V7, P919
[10]  
De Masi A., 1985, CONT MATH, V41, P71