Exponentially fitted variable two-step BDF algorithm for first order ODEs

被引:82
作者
Ixaru, LG
Vanden Berghe, G
De Meyer, H
机构
[1] State Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Inst Phys & Nucl Engn, Dept Theoret Phys, R-76900 Bucharest, Romania
关键词
exponential fitting; variable steps; multistep algorithms; frequency evaluation; error analysis;
D O I
10.1016/S0010-4655(02)00676-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We construct the exponential fitting extension of the classical variable step-size two-step BDF algorithm and examine its properties. We give the expression of the optimal value of the associated frequency and introduce a procedure for choosing the step widths in terms of the required accuracy. The order of the new algorithm is three (that is by one unit higher than for the classical one). On three severe stiff test cases we show that the new two-step algorithm behaves much better than its classical companion and that it is as good as the classical variable three-step algorithm. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 14 条
[1]  
Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
[2]   EFFECT OF VARIABLE MESH SIZE ON STABILITY OF MULTISTEP METHODS [J].
GEAR, CW ;
TU, KW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (05) :1025-1043
[3]   STABILITY OF MULTISTEP-METHODS ON VARIABLE GRIDS [J].
GRIGORIEFF, RD .
NUMERISCHE MATHEMATIK, 1983, 42 (03) :359-377
[4]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[5]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[6]   Frequency evaluation in exponential fitting multistep algorithms for ODEs [J].
Ixaru, LG ;
Vanden Berghe, G ;
De Meyer, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :423-434
[7]   Weights of the exponential fitting multistep algorithms for first-order ODEs [J].
Ixaru, LG ;
Rizea, M ;
Vanden Berghe, G ;
De Meyer, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) :83-93
[8]  
LAMBERT JD, 1991, NUMERICAL METHODS OR
[9]   ADAPTIVE FINITE-DIFFERENCE SOLVER FOR NONLINEAR 2-POINT BOUNDARY PROBLEMS WITH MILD BOUNDARY-LAYERS [J].
LENTINI, M ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (01) :91-111
[10]  
LIOEN WM, TEST SET INITIAL VAL