Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha)

被引:61
作者
Ruchala, Justyna [1 ]
Kurylenko, Olena O. [2 ]
Dmytruk, Kostyantyn, V [2 ]
Sibirny, Andriy A. [1 ]
机构
[1] Univ Rzeszow, Dept Microbiol & Biotechnol, Zelwerowicza 4, PL-35601 Rzeszow, Poland
[2] NAS Ukraine, Inst Cell Biol, Dept Mol Genet & Biotechnol, Drahomanov St 14-16, UA-79005 Lvov, Ukraine
关键词
Alcoholic fermentation; Bioethanol; Yeasts; Metabolic engineering; PENTOSE-PHOSPHATE PATHWAY; BACTERIAL XYLOSE ISOMERASE; PICHIA-STIPITIS; XYLITOL DEHYDROGENASE; ALCOHOLIC FERMENTATION; HANSENULA-POLYMORPHA; CANDIDA-SHEHATAE; ANAEROBIC GROWTH; D-XYLULOKINASE; FUEL ETHANOL;
D O I
10.1007/s10295-019-02242-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
引用
收藏
页码:109 / 132
页数:24
相关论文
共 211 条
  • [41] Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    Farwick, Alexander
    Bruder, Stefan
    Schadeweg, Virginia
    Oreb, Mislav
    Boles, Eckhard
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (14) : 5159 - 5164
  • [42] Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol
    Favaro, Lorenzo
    Jansen, Trudy
    van Zyl, Willem Heber
    [J]. CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (06) : 800 - 816
  • [43] Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae
    Feng, Quanzhou
    Liu, Z. Lewis
    Weber, Scott A.
    Li, Shizhong
    [J]. PLOS ONE, 2018, 13 (04):
  • [44] 3-Bromopyruvate: A New Targeted Antiglycolytic Agent and a Promise for Cancer Therapy
    Ganapathy-Kanniappan, S.
    Vali, M.
    Kunjithapatham, R.
    Buijs, M.
    Syed, L. H.
    Rao, P. P.
    Ota, S.
    Kwak, B. K.
    Loffroy, R.
    Geschwind, J. F.
    [J]. CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2010, 11 (05) : 510 - 517
  • [45] A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol
    Ge Jingping
    Sun Hongbing
    Song Gang
    Ling Hongzhi
    Ping Wenxiang
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (05) : 777 - 787
  • [46] Gellisen G, 2002, HANSENULA POLYMORPHA
  • [47] Heterologous protein production in methylotrophic yeasts
    Gellissen, G
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 54 (06) : 741 - 750
  • [48] Genome-Scale Consequences of Cofactor Balancing in Engineered Pentose Utilization Pathways in Saccharomyces cerevisiae
    Ghosh, Amit
    Zhao, Huimin
    Price, Nathan D.
    [J]. PLOS ONE, 2011, 6 (11):
  • [49] Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes
    Gombert, Andreas K.
    van Maris, Antonius J. A.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2015, 33 : 81 - 86
  • [50] Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    Gorsich, S. W.
    Dien, B. S.
    Nichols, N. N.
    Slininger, P. J.
    Liu, Z. L.
    Skory, C. D.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 71 (03) : 339 - 349