Semi-algebraic sets and equilibria of binary games

被引:5
作者
Vigeral, Guillaume [1 ]
Viossat, Yannick [1 ]
机构
[1] Univ Paris 09, CEREMADE, Pl Marechal Lattre Tassigny, F-75775 Paris 16, France
关键词
Semi-algebraic sets; Nash equilibria; Equilibrium payoffs; Binary games; UNIVERSALITY;
D O I
10.1016/j.orl.2015.11.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Any nonempty, compact, semi-algebraic set in [0, 1](n) is the projection of the set of mixed equilibria of a finite game with 2 actions per player on its first n coordinates. A similar result follows for sets of equilibrium payoffs. The proofs are constructive and elementary. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 9 条
[1]   Universality of Nash components [J].
Balkenborg, Dieter ;
Vermeulen, Dries .
GAMES AND ECONOMIC BEHAVIOR, 2014, 86 :67-76
[2]  
Basu S., 2011, ALGORITHMS REAL ALGE, V10, P12
[3]   REAL ALGEBRAIC-GEOMETRY AND THE 17TH HILBERT PROBLEM [J].
BOCHNAK, J ;
EFROYMSON, G .
MATHEMATISCHE ANNALEN, 1980, 251 (03) :213-241
[4]   On the distance between roots of integer polynomials [J].
Bugeaud, Y ;
Mignotte, M .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :553-556
[5]  
Coste M., 2002, RAAG NETW SCH, V145
[6]   Universality of Nash equilibria [J].
Datta, RS .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :424-432
[7]   MAXIMAL NASH SUBSETS FOR BIMATRIX GAMES [J].
JANSEN, MJM .
NAVAL RESEARCH LOGISTICS, 1981, 28 (01) :147-152
[8]   Equilibrium payoffs of finite games [J].
Lehrer, Ehud ;
Solan, Eilon ;
Viossat, Yannick .
JOURNAL OF MATHEMATICAL ECONOMICS, 2011, 47 (01) :48-53
[9]  
Levy Y.J., 2015, PREPRINT