Backpropagation algorithms for a broad class of dynamic networks

被引:108
作者
De Jesus, Orlando [1 ]
Hagan, Martin T.
机构
[1] Halliburton Energy Serv, Dept Res, Dallas, TX 75006 USA
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2007年 / 18卷 / 01期
关键词
backpropagation through time (BPTT); dynamic neural networks; gradient; Jacobian; layered digital dynamic network (LDDN); real-time recurrent learning (RTRL); recurrent neural networks;
D O I
10.1109/TNN.2006.882371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a general framework for describing dynamic netiral networks-the layered digital dynamic network (LDDN). This framework allows the development of two general algorithms for computing the gradients and Jacobians for these dynamic networks: backpropagation-through-time (BPTT) and real-time recurrent learning (RTRL). The structure of the LDDN framework enables an efficient implementation of both algorithms for arbitrary dynamic networks. This paper demonstrates that the BPTT algorithm is more efficient for gradient calculations, but the RTRL algorithm is more efficient for Jacobian calculations.
引用
收藏
页码:14 / 27
页数:14
相关论文
共 37 条
[1]   New results on recurrent network training: Unifying the algorithms and accelerating convergence [J].
Atiya, AF ;
Parlos, AG .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03) :697-709
[2]   Stability analysis of discrete-time recurrent neural networks [J].
Barabanov, NE ;
Prokhorov, DV .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02) :292-303
[3]  
CAMPOLUCCI P, 1994, P INT C NEUR NETW IC, P1884
[4]   Decision feedback recurrent neural equalization with fast convergence rate [J].
Choi, J ;
Bouchard, M ;
Yeap, TH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (03) :699-708
[5]  
DEJESUS O, 2001, P INT JOINT C NEUR N, V4, P2626
[6]  
DEJESUS O, 2002, THEIS OKLAHOMA STATE
[7]  
DEJESUS O, 2001, IEEEINT JOINT C NEUR
[8]  
DEMUTH HB, 2000, USERS GUIDE NEURAL N
[9]   A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification [J].
Feldkamp, LA ;
Puskorius, GV .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2259-2277
[10]  
Feldkamp LA, 1998, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, P2262, DOI 10.1109/IJCNN.1998.687213