Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators

被引:35
作者
Cai, Gang [1 ]
Dong, Qiao-Li [2 ]
Peng, Yu [2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
关键词
Extragradient method; Variational inequality; Viscosity method; Strong convergence; SUBGRADIENT EXTRAGRADIENT METHODS; COMPLEMENTARITY-PROBLEMS; ITERATIVE METHODS; PROJECTION; ALGORITHMS; POINT;
D O I
10.1007/s10957-020-01792-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a new viscosity extragradient algorithm for solving variational inequality problems of pseudo-monotone and non-Lipschitz continuous operator in real Hilbert spaces. We prove a strong convergence theorem under some appropriate conditions imposed on the parameters. Finally, we give some numerical experiments to illustrate the advantages of our proposed algorithms. The main results obtained in this paper extend and improve some related works in the literature.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 54 条
[1]  
Aubin J.-P., 1984, Applied Nonlinear Analysis
[2]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities
[3]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[4]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[5]   On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Heinrich, Andre ;
Hendrich, Christopher .
MATHEMATICAL PROGRAMMING, 2015, 150 (02) :251-279
[6]   A DOUGLAS-RACHFORD TYPE PRIMAL-DUAL METHOD FOR SOLVING INCLUSIONS WITH MIXTURES OF COMPOSITE AND PARALLEL-SUM TYPE MONOTONE OPERATORS [J].
Bot, Radu Ioan ;
Hendrich, Christopher .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2541-2565
[7]   A PRIMAL-DUAL SPLITTING ALGORITHM FOR FINDING ZEROS OF SUMS OF MAXIMAL MONOTONE OPERATORS [J].
Bot, Radu Ioan ;
Csetnek, Erno Robert ;
Heinrich, Andre .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2011-2036
[8]   Regularity conditions via generalized interiority notions in convex optimization: New achievements and their relation to some classical statements [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
OPTIMIZATION, 2012, 61 (01) :35-65
[9]   Outer Approximation Methods for Solving Variational Inequalities Defined over the Solution Set of a Split Convex Feasibility Problem [J].
Cegielski, Andrzej ;
Gibali, Aviv ;
Reich, Simeon ;
Zalas, Rafal .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) :1089-1108
[10]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335