Asymptotics of solutions to the Laplace-Beltrami equation on a rotation surface with a cusp

被引:1
作者
Kiselev, O. [1 ]
Shestakov, I. [2 ]
机构
[1] Ctr Comp, Inst Math, Dept Differential Equat, Ufa, Russia
[2] Univ Potsdam, Inst Math, Potsdam, Germany
关键词
Manifolds with singularities; Laplace-Beltrami operator;
D O I
10.1016/j.jmaa.2009.08.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study an asymptotic behaviour of solutions to the Laplace-Beltrami operator on a rotation surface near a cuspidal point. To this end we use the WKB-approximation. This approach describes the asymptotic behaviour of the solution more explicitly than abstract theory for operators with operator-valued coefficients. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 50 条
[21]   Laplace-Beltrami differentiability of positive definite kernels on the sphere [J].
Castro, M. H. ;
Menegatto, V. A. ;
Oliveira, C. P. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) :93-104
[22]   Infinitely Many Rotationally Symmetric Solutions to a Class of Semilinear Laplace-Beltrami Equations on Spheres [J].
Castro, Alfonso ;
Fischer, Emily M. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04) :723-729
[23]   On permeable potential boundary conditions for the Laplace-Beltrami operator [J].
Kal'menov, T. Sh. ;
Suragan, D. .
SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) :1060-1064
[24]   THE LAPLACE-BELTRAMI OPERATOR IN ALMOST-RIEMANNIAN GEOMETRY [J].
Boscain, Ugo ;
Laurent, Camille .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (05) :1739-1770
[25]   Convergence of discrete Laplace-Beltrami operators over surfaces [J].
Xu, GL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) :347-360
[26]   Extremal determinants of Laplace-Beltrami operators for rectangular tori [J].
Faulhuber, Markus .
MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) :175-195
[27]   EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR [J].
Pacard, Frank ;
Sicbaldi, Pieralberto .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (02) :515-542
[28]   Discrete Laplace-Beltrami operators for shape analysis and segmentation [J].
Reuter, Martin ;
Biasotti, Silvia ;
Giorgi, Daniela ;
Patane, Giuseppe ;
Spagnuolo, Michela .
COMPUTERS & GRAPHICS-UK, 2009, 33 (03) :381-390
[29]   Spectral Laplace-Beltrami Wavelets With Applications in Medical Images [J].
Tan, Mingzhen ;
Qiu, Anqi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (05) :1005-1017
[30]   Mesh Color Sharpening Using Laplace-Beltrami Operator [J].
Afrose, Zinat ;
Shen, Yuzhong .
2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, :1029-1033