Asymptotics of solutions to the Laplace-Beltrami equation on a rotation surface with a cusp

被引:1
作者
Kiselev, O. [1 ]
Shestakov, I. [2 ]
机构
[1] Ctr Comp, Inst Math, Dept Differential Equat, Ufa, Russia
[2] Univ Potsdam, Inst Math, Potsdam, Germany
关键词
Manifolds with singularities; Laplace-Beltrami operator;
D O I
10.1016/j.jmaa.2009.08.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study an asymptotic behaviour of solutions to the Laplace-Beltrami operator on a rotation surface near a cuspidal point. To this end we use the WKB-approximation. This approach describes the asymptotic behaviour of the solution more explicitly than abstract theory for operators with operator-valued coefficients. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 50 条
[11]   ON THE RESOLVENT OF THE LAPLACE-BELTRAMI OPERATOR IN HYPERBOLIC SPACE [J].
Guseinov, Gusein Sh. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (02) :186-206
[12]   Anisotropic Laplace-Beltrami Operators for Shape Analysis [J].
Andreux, Mathieu ;
Rodola, Emanuele ;
Aubry, Mathieu ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT IV, 2015, 8928 :299-312
[13]   Mean Laplace-Beltrami Operator for Quadrilateral Meshes [J].
Xiong, Yunhui ;
Li, Guiqing ;
Han, Guoqiang .
TRANSACTIONS ON EDUTAINMENT V, 2011, 6530 :189-201
[14]   ON THE LAPLACE-BELTRAMI OPERATOR ON COMPACT COMPLEX SPACES [J].
Bei, Francesco .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) :8477-8505
[15]   Shape sensitivity for the Laplace-Beltrami operator with singularities [J].
Ferchichi, J ;
Zolésio, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (02) :340-384
[16]   Statistical Properties of Eigenvalues of Laplace-Beltrami Operators [J].
Jiang, Tiefeng ;
Wang, Ke .
JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) :1061-1109
[17]   Laplace-Beltrami Differentiability of Positive Definite Kernels on the Sphere [J].
M. H. CASTRO ;
V. A. MENEGATTO ;
C. P. OLIVEIRA .
Acta Mathematica Sinica,English Series, 2013, (01) :93-104
[18]   The Hierarchical Subspace Iteration Method for Laplace-Beltrami Eigenproblems [J].
Nasikun, Ahmad ;
Hildebrandt, Klaus .
ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (02)
[19]   On the eigenfunction expansion of the Laplace-Beltrami operator in hyperbolic space [J].
Guseinov, Gusein Sh. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (10) :1309-1326
[20]   Laplace-Beltrami differentiability of positive definite kernels on the sphere [J].
M. H. Castro ;
V. A. Menegatto ;
C. P. Oliveira .
Acta Mathematica Sinica, English Series, 2013, 29 :93-104