Approximate Cayley transform methods for inverse eigenvalue problems and convergence analysis

被引:5
作者
Shen, W. P. [1 ]
Li, C. [2 ]
Yao, J. C. [3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
[4] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 807, Taiwan
基金
中国国家自然科学基金;
关键词
Nonlinear equation; Inverse eigenvalue problem; Cayley transform method; NUMERICAL-METHODS; MATRICES;
D O I
10.1016/j.laa.2017.02.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on an approximation to Cayley transform, we propose an approximate Cayley transform method and its inexact version for solving inverse eigenvalue problems, which has the advantage over other known methods in the sense that it avoids solving systems in obtaining the approximate eigenvectors. Under the nonsingular condition used in D. Sun and J. Sun [29], we show that the proposed methods converge at least superlinearly. Moreover, numerical experiments are given which illustrate that, comparing with the Cayley transform methods, our methods need much less inner iterations and CPU time. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 219
页数:33
相关论文
共 32 条
[1]   On the local convergence of an iterative approach for inverse singular value problems [J].
Bai, Zheng-Jian ;
Morini, Benedetta ;
Xu, Shu-fang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) :344-360
[2]   An inexact Cayley transform method for inverse eigenvalue problems [J].
Bai, ZJ ;
Chan, RH ;
Morini, B .
INVERSE PROBLEMS, 2004, 20 (05) :1675-1689
[3]  
Bonnans JF, 2006, NUMERICAL OPTIMIZATI, V2nd, DOI 10.1007/978-3-662-05078-1
[4]  
Brussard P. J, 1977, Shell model applications in nuclear spectroscopy
[5]  
BYRNES CI, 1989, LECT NOTES CONTR INF, V135, P31
[6]   The inexact Newton-like method for inverse eigenvalue problem [J].
Chan, RH ;
Chung, HL ;
Xu, SF .
BIT NUMERICAL MATHEMATICS, 2003, 43 (01) :7-20
[7]   On the convergence rate of a quasi-Newton method for inverse eigenvalue problems [J].
Chan, RH ;
Xu, SF ;
Zhou, HM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :436-441
[8]   Inverse eigenvalue problems [J].
Chu, MT .
SIAM REVIEW, 1998, 40 (01) :1-39
[9]  
Chu MT, 2002, ACT NUMERIC, V11, P1, DOI 10.1017/S0962492902000014
[10]  
Clarke Frank H., 1983, Optimization and Nonsmooth Analysis