Pag, a putative tumor suppressor, interacts with the Myc Box II domain of C-myc and selectively alters its biological function and target gene expression

被引:118
作者
Mu, ZM
Yin, XY
Prochownik, EV
机构
[1] Childrens Hosp Pittsburgh, Sect Hematol, Pittsburgh, PA 15213 USA
[2] Childrens Hosp Pittsburgh, Hematol Oncol Sect, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Ctr Med, Dept Mol Genet & Biochem, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Inst Canc, Program Mol Oncol, Pittsburgh, PA 15213 USA
关键词
D O I
10.1074/jbc.M206066200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The highly conserved Myc Box II (MBII) domain of c-Myc is critically important for transformation and transcriptional regulation. A yeast two-hybrid screen identified Pag as a MBII-interacting protein. Pag, a member of the peroxiredoxin family, has been reported previously to bind to and inhibit the cytostatic properties of the c-Abl oncoprotein. We now show that Pag promotes increased cell size and confers a proapoptotic phenotype, two hallmark features of ectopic c-Myc overexpression. Pag and c-Myc also confer resistance to oxidative stress, a previously unrecognized property of the latter protein. In contrast, Pag inhibits tumorigenesis by c-Myc-overexpressing fibroblasts and causes a broad but selective loss of c-Myc target gene regulation. Pag is therefore an MBII-interacting protein that can either mimic or enhance some of the c-Myc properties while at the same inhibiting others. These features, along with the previously identified interaction with c-Abl, provide support for the idea that Pag functions as a tumor suppressor.
引用
收藏
页码:43175 / 43184
页数:10
相关论文
共 59 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]  
ASKEW DS, 1991, ONCOGENE, V6, P1915
[3]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[4]   MAD - A HETERODIMERIC PARTNER FOR MAX THAT ANTAGONIZES MYC TRANSCRIPTIONAL ACTIVITY [J].
AYER, DE ;
KRETZNER, L ;
EISENMAN, RN .
CELL, 1993, 72 (02) :211-222
[5]   A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION [J].
AYER, DE ;
EISENMAN, RN .
GENES & DEVELOPMENT, 1993, 7 (11) :2110-2119
[6]   The Max network gone mad [J].
Baudino, TA ;
Cleveland, JL .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :691-702
[7]   THE ORNITHINE DECARBOXYLASE GENE IS A TRANSCRIPTIONAL TARGET OF C-MYC [J].
BELLOFERNANDEZ, C ;
PACKHAM, G ;
CLEVELAND, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (16) :7804-7808
[8]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[9]   CLONING AND SEQUENCING OF THIOL-SPECIFIC ANTIOXIDANT FROM MAMMALIAN BRAIN - ALKYL HYDROPEROXIDE REDUCTASE AND THIOL-SPECIFIC ANTIOXIDANT DEFINE A LARGE FAMILY OF ANTIOXIDANT ENZYMES [J].
CHAE, HZ ;
ROBISON, K ;
POOLE, LB ;
CHURCH, G ;
STORZ, G ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7017-7021
[10]   Myc-mediated transformation: the repression connection [J].
Claassen, GF ;
Hann, SR .
ONCOGENE, 1999, 18 (19) :2925-2933