Bad metallic transport in a cold atom Fermi-Hubbard system

被引:201
作者
Brown, Peter T. [1 ]
Mitra, Debayan [1 ]
Guardado-Sanchez, Elmer [1 ]
Nourafkan, Reza [2 ,3 ]
Reymbaut, Alexis [2 ,3 ]
Hebert, Charles-David [2 ,3 ]
Bergeron, Simon [2 ,3 ]
Tremblay, A. -M. S. [2 ,3 ,4 ]
Kokalj, Jure [5 ,6 ]
Huse, David A. [1 ]
Schauss, Peter [1 ,7 ]
Bakr, Waseem S. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Sherbrooke, Dept Phys, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Sherbrooke, Regrp Quebecois Mat Pointe, Sherbrooke, PQ J1K 2R1, Canada
[4] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[5] Univ Ljubljana, Fac Civil & Geodet Engn, SI-1000 Ljubljana, Slovenia
[6] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
[7] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CONDUCTION;
D O I
10.1126/science.aat4134
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.
引用
收藏
页码:379 / 382
页数:4
相关论文
共 38 条
[1]   Hidden Fermi liquid: The secret of high-Tc cuprates [J].
Anderson, P. W. .
PHYSICAL REVIEW B, 2008, 78 (17)
[2]  
Anderson R., 2018, ARXIV171209965V2COND
[3]   Conduction of Ultracold Fermions Through a Mesoscopic Channel [J].
Brantut, Jean-Philippe ;
Meineke, Jakob ;
Stadler, David ;
Krinner, Sebastian ;
Esslinger, Tilman .
SCIENCE, 2012, 337 (6098) :1069-1071
[4]  
Brown P. T., 2018, DATA BAD METALLIC TR
[5]   Spin-imbalance in a 2D Fermi-Hubbard system [J].
Brown, Peter T. ;
Mitra, Debayan ;
Guardado-Sanchez, Elmer ;
Schauss, Peter ;
Kondov, Stanimir S. ;
Khatami, Ehsan ;
Paiva, Thereza ;
Trivedi, Nandini ;
Huse, David A. ;
Bakr, Waseem S. .
SCIENCE, 2017, 357 (6358) :1385-1388
[6]   Equation of State of the Two-Dimensional Hubbard Model [J].
Cocchi, Eugenio ;
Miller, Luke A. ;
Drewes, Jan H. ;
Koschorreck, Marco ;
Pertot, Daniel ;
Brennecke, Ferdinand ;
Koehl, Michael .
PHYSICAL REVIEW LETTERS, 2016, 116 (17)
[7]  
Coleman P, 2015, INTRODUCTION TO MANY-BODY PHYSICS, P1, DOI 10.1017/CBO9781139020916
[8]   How Bad Metals Turn Good: Spectroscopic Signatures of Resilient Quasiparticles [J].
Deng, Xiaoyu ;
Mravlje, Jernej ;
Zitko, Rok ;
Ferrero, Michel ;
Kotliar, Gabriel ;
Georges, Antoine .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[9]   Colloquium: Saturation of electrical resistivity [J].
Gunnarsson, O ;
Calandra, M ;
Han, JE .
REVIEWS OF MODERN PHYSICS, 2003, 75 (04) :1085-1099
[10]  
Hartnoll SA, 2018, HOLOGRAPHIC QUANTUM MATTER