Deep Learning Method for Melanoma Discrimination Using Blood Flow Distribution Images

被引:0
|
作者
Akiguchi, Shunsuke [1 ]
Kyoden, Tomoaki [1 ]
Tajiri, Tomoki [2 ]
Andoh, Tsugunobu [3 ,4 ]
Hachiga, Tadashi [5 ]
机构
[1] Toyama Coll, Natl Inst Technol, 1-2 Ebie Neriya, Imizu, Toyama 9330293, Japan
[2] Toyama Coll, Natl Inst Technol, 13 Hongo, Toyama, Toyama 9398630, Japan
[3] Kinjo Gakuin Univ, Moriyama Ku, 2-1723 Omori, Nagoya, Aichi 4638521, Japan
[4] Univ Toyama, Grad Sch Med & Pharmaceut Sci, 2630 Sugitani, Toyama, Toyama 9300194, Japan
[5] Komatsu Univ, Dept Clin Engn, Fac Hlth Sci, 1-14 Mukaimotoori Machi, Komatsu, Ishikawa 9230961, Japan
基金
日本学术振兴会;
关键词
laser Doppler velocimeter; blood flow image; deep learning;
D O I
10.1002/tee.23363
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a multipoint laser Doppler velocimeter (MLDV) that can measure blood flow velocity non-invasively. The device can acquire blood flow velocity in absolute value and image the blood flow distribution. Absolute values of blood flow velocity indicated a follow-up on the affected area. Therefore, we have performed a follow-up for melanoma and breast cancer. However, this device does not have the ability to determine whether a measurement site is cancerous or not. Thus, in this study, we built a deep learning system with blood flow distribution images as input and tested whether it can discriminate melanoma or not. The results showed that this technique was particularly effective in the early stages of the disease when no abnormalities were found on the skin surface. (c) 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
引用
收藏
页码:813 / 815
页数:3
相关论文
共 50 条
  • [1] Inventory Satisfaction Discrimination Method Utilizing Images and Deep Learning
    Kawanaka, Tenma
    Kudo, Tsukasa
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 937 - 946
  • [2] Cultivar discrimination of litchi fruit images using deep learning
    Osako, Yutaro
    Yamane, Hisayo
    Lin, Shu-Yen
    Chen, Po-An
    Tao, Ryutaro
    SCIENTIA HORTICULTURAE, 2020, 269
  • [3] Melanoma diagnosis using deep learning techniques on dermatoscopic images
    Jojoa Acosta, Mario Fernando
    Caballero Tovar, Liesle Yail
    Garcia-Zapirain, Maria Begonya
    Percybrooks, Winston Spencer
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [4] Melanoma diagnosis using deep learning techniques on dermatoscopic images
    Mario Fernando Jojoa Acosta
    Liesle Yail Caballero Tovar
    Maria Begonya Garcia-Zapirain
    Winston Spencer Percybrooks
    BMC Medical Imaging, 21
  • [5] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [6] Deep learning based melanoma diagnosis using dermoscopic images
    Wall, Conor
    Young, Fraser
    Zhang, Li
    Phillips, Emma-Jane
    Jiang, Richard
    Yu, Yonghong
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 907 - 914
  • [7] Web Application for Screening Malignant Melanoma in Digital Images Using Deep Learning
    Jangsamsi, Kharittha
    Samosorn, Kasidet
    Hirunuran, Puttimate
    Sakdapetchsiri, Prapawin
    Mahikul, Wiriya
    Smithrithee, Rithee
    Chinnasarn, Krisana
    2024 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, IEEE BIGCOMP 2024, 2024, : 406 - 411
  • [8] Predicting BRAF and NRAS Mutations Using Deep Learning on Histopathology Images of Melanoma
    Kim, Randie
    Nomikou, Sofia
    Dawood, Zarmeena
    Coudray, Nicolas
    Jour, George
    Moran, Una
    Razavian, Narges
    Osman, Iman
    Tsirigos, Aristotelis
    MODERN PATHOLOGY, 2019, 32
  • [9] MelaNet: an effective deep learning framework for melanoma detection using dermoscopic images
    Lafraxo, Samira
    El Ansari, Mohamed
    Charfi, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 16021 - 16045
  • [10] Predicting BRAF and NRAS Mutations Using Deep Learning on Histopathology Images of Melanoma
    Kim, Randie
    Nomikou, Sofia
    Dawood, Zarmeena
    Coudray, Nicolas
    Jour, George
    Moran, Una
    Razavian, Narges
    Osman, Iman
    Tsirigos, Aristotelis
    LABORATORY INVESTIGATION, 2019, 99