Understanding electrochemical potentials of cathode materials in rechargeable batteries

被引:867
作者
Liu, Chaofeng [1 ]
Neale, Zachary G. [2 ]
Cao, Guozhong [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; ENERGY-STORAGE; ELECTRODE MATERIALS; NANOSTRUCTURED MATERIALS; HYBRID NANOSTRUCTURES; LOCAL-STRUCTURE; LAYERED LIMNO2; CARBON; INTERCALATION; CONVERSION;
D O I
10.1016/j.mattod.2015.10.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 138 条
  • [1] Batteries and electrochemical capacitors
    Abruna, Hector D.
    Kiya, Yasuyuki
    Henderson, Jay C.
    [J]. PHYSICS TODAY, 2008, 61 (12) : 43 - 47
  • [2] The formation and stability of the solid electrolyte interface on the graphite anode
    Agubra, Victor A.
    Fergus, Jeffrey W.
    [J]. JOURNAL OF POWER SOURCES, 2014, 268 : 153 - 162
  • [3] Fluoride based electrode materials for advanced energy storage devices
    Amatucci, Glenn G.
    Pereira, Nathalie
    [J]. JOURNAL OF FLUORINE CHEMISTRY, 2007, 128 (04) : 243 - 262
  • [4] The source of first-cycle capacity loss in LiFePO4
    Andersson, AS
    Thomas, JO
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 498 - 502
  • [5] [Anonymous], 2009, TRANSP EN CO2 MOV SU, DOI DOI 10.1787/9789264073173-EN
  • [6] [Anonymous], 2014, 2014 INT C INF EL VI, DOI DOI 10.1109/ICIEV.2014.6850752
  • [7] LiCoO2:: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties
    Antolini, E
    [J]. SOLID STATE IONICS, 2004, 170 (3-4) : 159 - 171
  • [8] LiMnPO4 - A next generation cathode material for lithium-ion batteries
    Aravindan, Vanchiappan
    Gnanaraj, Joe
    Lee, Yun-Sung
    Madhavi, Srinivasan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) : 3518 - 3539
  • [9] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [10] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657