Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates

被引:80
作者
Blackman, Chris J. [1 ,2 ]
Li, Ximeng [1 ]
Choat, Brendan [1 ]
Rymer, Paul D. [1 ]
De Kauwe, Martin G. [3 ]
Duursma, Remko A. [1 ]
Tissue, David T. [1 ]
Medlyn, Belinda E. [1 ]
机构
[1] Western Sydney Univ, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia
[2] Univ Clermont Auvergne, INRA, PIAF, F-63000 Clermont Ferrand, France
[3] Univ New South Wales, ARC Ctr Excellence Extreme Climates, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
drought; eucalyptus; g(min); hydraulic failure; plant desiccation time; relative water content; stomatal closure; WOODY ANGIOSPERMS; HYDRAULIC FAILURE; WATER RELATIONS; TREE MORTALITY; CUTICULAR TRANSPIRATION; PRECIPITATION PULSES; STOMATAL CLOSURE; EXTREME DROUGHT; VULNERABILITY; EMBOLISM;
D O I
10.1111/nph.16042
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Catastrophic failure of the water transport pathway in trees is a principal mechanism of mortality during extreme drought. To be able to predict the probability of mortality at an individual and landscape scale we need knowledge of the time for plants to reach critical levels of hydraulic failure. We grew plants of eight species of Eucalyptus originating from contrasting climates before allowing a subset to dehydrate. We tested whether a trait-based model of time to plant desiccation t(crit), from stomatal closure g(s90) to a critical level of hydraulic dysfunction psi(crit) is consistent with observed dry-down times. Plant desiccation time varied among species, ranging from 96.2 to 332 h at a vapour-pressure deficit of 1 kPa, and was highly predictable using the t(crit) model in conjunction with a leaf shedding function. Plant desiccation time was longest in species with high cavitation resistance, strong vulnerability segmentation, wide stomatal-hydraulic safety, and a high ratio of total plant water content to leaf area. Knowledge of t(crit) in combination with water-use traits that influence stomatal closure could significantly increase our ability to predict the timing of drought-induced mortality at tree and forest scales.
引用
收藏
页码:632 / 643
页数:12
相关论文
共 61 条
[1]   A multi-species synthesis of physiological mechanisms in drought-induced tree mortality [J].
Adams, Henry D. ;
Zeppel, Melanie J. B. ;
Anderegg, William R. L. ;
Hartmann, Henrik ;
Landhausser, Simon M. ;
Tissue, David T. ;
Huxman, Travis E. ;
Hudson, Patrick J. ;
Franz, Trenton E. ;
Allen, Craig D. ;
Anderegg, Leander D. L. ;
Barron-Gafford, Greg A. ;
Beerling, David J. ;
Breshears, David D. ;
Brodribb, Timothy J. ;
Bugmann, Harald ;
Cobb, Richard C. ;
Collins, Adam D. ;
Dickman, L. Turin ;
Duan, Honglang ;
Ewers, Brent E. ;
Galiano, Lucia ;
Galvez, David A. ;
Garcia-Forner, Nuria ;
Gaylord, Monica L. ;
Germino, Matthew J. ;
Gessler, Arthur ;
Hacke, Uwe G. ;
Hakamada, Rodrigo ;
Hector, Andy ;
Jenkins, Michael W. ;
Kane, Jeffrey M. ;
Kolb, Thomas E. ;
Law, Darin J. ;
Lewis, James D. ;
Limousin, Jean-Marc ;
Love, David M. ;
Macalady, Alison K. ;
Martinez-Vilalta, Jordi ;
Mencuccini, Maurizio ;
Mitchell, Patrick J. ;
Muss, Jordan D. ;
O'Brien, Michael J. ;
O'Grady, Anthony P. ;
Pangle, Robert E. ;
Pinkard, Elizabeth A. ;
Piper, Frida I. ;
Plaut, Jennifer A. ;
Pockman, William T. ;
Quirk, Joe .
NATURE ECOLOGY & EVOLUTION, 2017, 1 (09) :1285-1291
[2]   On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene [J].
Allen, Craig D. ;
Breshears, David D. ;
McDowell, Nate G. .
ECOSPHERE, 2015, 6 (08)
[3]   Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe [J].
Anderegg, William R. L. ;
Klein, Tamir ;
Bartlett, Megan ;
Sack, Lawren ;
Pellegrini, Adam F. A. ;
Choat, Brendan ;
Jansen, Steven .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) :5024-5029
[4]  
Anderegg WRL, 2015, NAT GEOSCI, V8, P367, DOI [10.1038/ngeo2400, 10.1038/NGEO2400]
[5]   Global analysis of plasticity in turgor loss point, a key drought tolerance trait [J].
Bartlett, Megan K. ;
Zhang, Ya ;
Kreidler, Nissa ;
Sun, Shanwen ;
Ardy, Rico ;
Cao, Kunfang ;
Sack, Lawren .
ECOLOGY LETTERS, 2014, 17 (12) :1580-1590
[6]   Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure [J].
Blackman, Chris J. ;
Creek, Danielle ;
Maier, Chelsea ;
Aspinwall, Michael J. ;
Drake, John E. ;
Pfautsch, Sebastian ;
O'Grady, Anthony ;
Delzon, Sylvain ;
Medlyn, Belinda E. ;
Tissue, David T. ;
Choat, Brendan .
TREE PHYSIOLOGY, 2019, 39 (06) :910-924
[7]   Toward an index of desiccation time to tree mortality under drought [J].
Blackman, Chris J. ;
Pfautsch, Sebastian ;
Choat, Brendan ;
Delzon, Sylvain ;
Gleason, Sean M. ;
Duursma, Remko A. .
PLANT CELL AND ENVIRONMENT, 2016, 39 (10) :2342-2345
[8]   Native forests and climate change: Lessons from eucalypts [J].
Booth, T. H. ;
Broadhurst, L. M. ;
Pinkard, E. ;
Prober, S. M. ;
Dillon, S. K. ;
Bush, D. ;
Pinyopusarerk, K. ;
Doran, J. C. ;
Ivkovich, M. ;
Young, A. G. .
FOREST ECOLOGY AND MANAGEMENT, 2015, 347 :18-29
[9]   Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers [J].
Brodribb, Tim J. ;
Cochard, Herve .
PLANT PHYSIOLOGY, 2009, 149 (01) :575-584
[10]   Visual quantification of embolism reveals leaf vulnerability to hydraulic failure [J].
Brodribb, Timothy J. ;
Skelton, Robert P. ;
McAdam, Scott A. M. ;
Bienaime, Diane ;
Lucani, Christopher J. ;
Marmottant, Philippe .
NEW PHYTOLOGIST, 2016, 209 (04) :1403-1409