A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays

被引:100
作者
Alexander, Kristen D. [1 ]
Hampton, Meredith J. [2 ]
Zhang, Shunping [3 ]
Dhawan, Anuj [4 ]
Xu, Hongxing [3 ]
Lopez, Rene [1 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Chem, Chapel Hill, NC USA
[3] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
[4] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
基金
美国国家科学基金会;
关键词
surface-enhanced Raman scattering (SERS); gold nanoparticles; hot spot; enhancement factor; templating; ENHANCED RAMAN-SCATTERING; METAL NANOPARTICLES; AG NANOPARTICLES; SURFACE; SPECTROSCOPY; MOLECULES; FIELD; NANOCRYSTALS; SPHERES;
D O I
10.1002/jrs.2392
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
We present a high-throughput method for fabricating large arrays of surface-enhanced Raman scattering (SERS) active gold dimers. Using a large-area/low-cost nanopatterning method in conjunction with a meniscus force deposition technique, we were able to create large arrays of uniformly spaced nanoclusters comprising two 60-nm gold nanospheres. Raman measurements of a thiophenol monolayer deposited on smaller scale arrays of aligned dimers yielded enhancement factors as high as 10(9). Polarization-control led measurements show spectral peak heights to be 10-100 times smaller when the incident beam is polarized perpendicularly to the dimer axis, confirming that the measured enhancements arise from the 'hot spots' between the two nanospheres. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:2171 / 2175
页数:5
相关论文
共 32 条
[1]  
Brousseau LC, 1999, ADV MATER, V11, P447, DOI 10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO
[2]  
2-I
[3]   Integration of colloidal nanocrystals into lithographically patterned devices [J].
Cui, Y ;
Bjork, MT ;
Liddle, JA ;
Sonnichsen, C ;
Boussert, B ;
Alivisatos, AP .
NANO LETTERS, 2004, 4 (06) :1093-1098
[4]   A perspective on single molecule SERS: current status and future challenges [J].
Etchegoin, P. G. ;
Le Ru, E. C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (40) :6079-6089
[5]   Optical near-field excitations on plasmonic nanoparticle-based structures [J].
Foteinopoulou, S. ;
Vigneron, J. P. ;
Vandenbem, C. .
OPTICS EXPRESS, 2007, 15 (07) :4253-4267
[6]   Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method [J].
Futamata, M ;
Maruyama, Y ;
Ishikawa, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (31) :7607-7617
[7]   The Pursuit of a Scalable Nanofabrication Platform for Use in Material and Life Science Applications [J].
Gratton, Stephanie E. A. ;
Williams, Stuart S. ;
Napier, Mary E. ;
Pohlhaus, Patrick D. ;
Zhou, Zhilian ;
Wiles, Kenton B. ;
Maynor, Benjamin W. ;
Shen, Clifton ;
Olafsen, Tove ;
Samulski, Edward T. ;
Desimone, Joseph M. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1685-1695
[8]   Confined plasmons in nanofabricated single silver particle pairs:: Experimental observations of strong interparticle interactions [J].
Gunnarsson, L ;
Rindzevicius, T ;
Prikulis, J ;
Kasemo, B ;
Käll, M ;
Zou, SL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (03) :1079-1087
[9]   Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering [J].
Gunnarsson, L ;
Bjerneld, EJ ;
Xu, H ;
Petronis, S ;
Kasemo, B ;
Käll, M .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :802-804
[10]   Electromagnetic fields around silver nanoparticles and dimers [J].
Hao, E ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (01) :357-366