LOCAL GRADIENT ESTIMATES OF p-HARMONIC FUNCTIONS, 1/H-FLOW, AND AN ENTROPY FORMULA

被引:0
作者
Kotschwar, Brett [1 ]
Ni, Lei [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2009年 / 42卷 / 01期
基金
美国国家科学基金会;
关键词
LOGARITHMIC SOBOLEV INEQUALITY; MEAN-CURVATURE FLOW; DIFFERENTIAL-EQUATIONS; RIEMANNIAN MANIFOLDS; GREENS-FUNCTIONS; REGULARITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this paper, we prove local interior and boundary gradient estimates for p-harmonic functions on general Riemannian manifolds. With these estimates, following the strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set formulation of the 1/H (inverse mean curvature) flow for hypersurfaces in ambient manifolds satisfying a sharp volume growth assumption. In the second part of this paper, we consider two parabolic analogues of the p-harmonic equation and prove sharp Li-Yau type gradient estimates for positive solutions to these equations on manifolds of nonnegative Ricci curvature. For one of these equations, we also prove an entropy monotonicity formula generalizing an earlier such formula of the second author for the linear heat equation. As an application of this formula, we show that a complete Riemannian manifold with nonnegative Ricci curvature and sharp LP-logarithmic Sobolev inequality must be isometric to Euclidean space.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 30 条
[1]  
Bakry Dominique, 1995, ESAIM Probab. Statist., V1, P391
[2]  
Barenblatt G.I., 1952, PRIKL, V16, P679
[3]   Geometric asymptotics and the logarithmic Sobolev inequality [J].
Beckner, W .
FORUM MATHEMATICUM, 1999, 11 (01) :105-137
[4]   A functional form of the isoperimetric inequality for the Gaussian measure [J].
Bobkov, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :39-49
[5]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[6]  
Chow B., 2007, Mathematical Surveys and Monographs, V135
[7]  
Chow B., 2008, Mathematical Surveys and Monographs, V144
[8]   Nonlinear diffusions, hypercontractivity and the optimal LP-Euclidean logarithmic Sobolev inequality [J].
Del Pino, M ;
Dolbeault, J ;
Gentil, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :375-388
[9]   The optimal Euclidean Lp-Sobolev logarithmic inequality [J].
Del Pino, M ;
Dolbeault, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :151-161
[10]  
Ecker K, 2000, J REINE ANGEW MATH, V522, P105