A heuristic for boundedness of ranks of elliptic curves

被引:29
作者
Park, Jennifer [1 ]
Poonen, Bjorn [2 ]
Voight, John [3 ]
Wood, Melanie Matchett [4 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Dartmouth Coll, Dept Math, 6188 Kemeny Hall, Hanover, NH 03755 USA
[4] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53705 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Elliptic curve; rank; Shafarevich-Tate group; CANONICAL HEIGHT; QUADRATIC TWISTS; MODULAR-FORMS; SELMER GROUPS; L-SERIES; POINTS; NUMBER; DENSITY; VALUES; SUBSPACES;
D O I
10.4171/JEMS/893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a heuristic that suggests that ranks of elliptic curves E over Q are bounded. In fact, it suggests that there are only finitely many E of rank greater than 21. Our heuristic is based on modeling the ranks and Shafarevich-Tate groups of elliptic curves simultaneously, and relies on a theorem counting alternating integer matrices of specified rank. We also discuss analogues for elliptic curves over other global fields.
引用
收藏
页码:2859 / 2903
页数:45
相关论文
共 106 条
[1]  
[Anonymous], 1997, ALGORITHMS MODULAR E
[2]  
[Anonymous], 1962, ANGEW MATH, DOI DOI 10.1515/CRLL.1962.211.95
[3]  
[Anonymous], 1978, I HAUTES ETUDES SCI
[4]  
[Anonymous], PROGR MATH
[5]  
[Anonymous], 2006, The millennium prize problems
[6]  
[Anonymous], 1979, LECT NOTES MATH
[7]   Databases of elliptic curves ordered by height and distributions of Selmer groups and ranks [J].
Balakrishnan, Jennifer S. ;
Ho, Wei ;
Kaplan, Nathan ;
Spicer, Simon ;
Stein, William ;
Weigandt, James .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 :351-370
[8]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[9]   Average ranks of elliptic curves: Tension between data and conjecture [J].
Bektemirov, Baur ;
Mazur, Barry ;
Stein, William ;
Watkins, Mark .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (02) :233-254
[10]  
Bhargava M., 2014, ARXIV14071826V2