A Non-Local Regularization of the Short Pulse Equation

被引:0
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ,3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Ist Nazl Alta Matemat INdAM, Grp Nazl Anal Matemat Probabil & Loro Applicaz GN, Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2021年 / 6卷 / 02期
关键词
Existence; uniqueness; stability; short pulse equation; non-local formulation; Cauchy problem; OSTROVSKY-HUNTER EQUATION; NONHOMOGENEOUS INITIAL-BOUNDARY; FINITE-DIFFERENCE SCHEME; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; DYNAMICS; MODEL; WELLPOSEDNESS; CONVERGENCE; SCATTERING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short pulse equation provides a model for the propagation of ultra-short light pulses in silica optical fibers. In this paper, we consider a nonlocal regularization of that equation and prove its well-posedness.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[3]   A model equation for ultrashort optical pulses around the zero dispersion frequency [J].
Amiranashvili, S. ;
Vladimirov, A. G. ;
Bandelow, U. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (02) :219-226
[4]   Solitary-wave solutions for few-cycle optical pulses [J].
Amiranashvili, Sh. ;
Vladimirov, A. G. ;
Bandelow, U. .
PHYSICAL REVIEW A, 2008, 77 (06)
[5]  
BEALS R, 1989, STUD APPL MATH, V81, P125
[6]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[7]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[8]   A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain [J].
Coclite, G. M. ;
Ridder, J. ;
Risebro, N. H. .
BIT NUMERICAL MATHEMATICS, 2017, 57 (01) :93-122
[9]  
Coclite G. M., DISCRETE CONTIN DI S
[10]  
Coclite G.M., 2014, HYPERBOLIC CONSERVAT, V49, P143, DOI DOI 10.1007/978-3-642-39007-47