A Non-Local Regularization of the Short Pulse Equation

被引:0
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ,3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Ist Nazl Alta Matemat INdAM, Grp Nazl Anal Matemat Probabil & Loro Applicaz GN, Rome, Italy
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2021年 / 6卷 / 02期
关键词
Existence; uniqueness; stability; short pulse equation; non-local formulation; Cauchy problem; OSTROVSKY-HUNTER EQUATION; NONHOMOGENEOUS INITIAL-BOUNDARY; FINITE-DIFFERENCE SCHEME; GLOBAL WELL-POSEDNESS; CONSERVATION-LAWS; DYNAMICS; MODEL; WELLPOSEDNESS; CONVERGENCE; SCATTERING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short pulse equation provides a model for the propagation of ultra-short light pulses in silica optical fibers. In this paper, we consider a nonlocal regularization of that equation and prove its well-posedness.
引用
收藏
页码:295 / 310
页数:16
相关论文
共 50 条
  • [1] NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS
    Aggarwal, Aekta
    Colombo, Rinaldo M.
    Goatin, Paola
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 963 - 983
  • [2] AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW
    Amadori, Debora
    Shen, Wen
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) : 105 - 131
  • [3] A model equation for ultrashort optical pulses around the zero dispersion frequency
    Amiranashvili, S.
    Vladimirov, A. G.
    Bandelow, U.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (02) : 219 - 226
  • [4] Solitary-wave solutions for few-cycle optical pulses
    Amiranashvili, Sh.
    Vladimirov, A. G.
    Bandelow, U.
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [5] BEALS R, 1989, STUD APPL MATH, V81, P125
  • [6] On nonlocal conservation laws modelling sedimentation
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    Tory, E. M.
    [J]. NONLINEARITY, 2011, 24 (03) : 855 - 885
  • [7] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
    Blandin, Sebastien
    Goatin, Paola
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (02) : 217 - 241
  • [8] A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain
    Coclite, G. M.
    Ridder, J.
    Risebro, N. H.
    [J]. BIT NUMERICAL MATHEMATICS, 2017, 57 (01) : 93 - 122
  • [9] Coclite G. M., DISCRETE CONTIN DI S
  • [10] Well-Posedness Results for the Continuum Spectrum Pulse Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. MATHEMATICS, 2019, 7 (11)