Electrical load forecasting in disaggregated levels using Fuzzy ARTMAP artificial neural network and noise removal by singular spectrum analysis

被引:5
作者
Mueller, M. R. [1 ]
Gaio, G. [2 ]
Carreno, E. M. [2 ]
Lotufo, A. D. P. [1 ]
Teixeira, L. A. [3 ]
机构
[1] UNESP FEIS, Elect Engn Dept, Ilha Solteira, SP, Brazil
[2] Western Parana State Univ UNIOESTE, Engn & Exact Sci Ctr CECE, Foz Do Iguacu, Parana, Brazil
[3] Fed Latin Amer Integrat Univ, UNILA, Foz Do Iguacu, PR, Brazil
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 07期
关键词
Forecasting; Power load; Fuzzy ARTMAP; Singular spectrum analysis; CONSUMPTION;
D O I
10.1007/s42452-020-2988-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrical load forecasting in disaggregated levels is a difficult task due to time series randomness, which leads to noise and consequently affects the quality of predictions. To mitigate this problem, noise removal using singular spectrum analysis (SSA) is used in this work in conjunction with a Fuzzy ARTMAP artificial neural network, presenting excellent results when compared with traditional methods like SARIMA. A reduction of almost 50% on the MAPE is achieved. The SSA method is preferable to other filtering methods because it has a low computational cost, depends on a small number of parameters, requires few data to present good results, and it does not cause delay into the denoised series.
引用
收藏
页数:10
相关论文
共 63 条
  • [1] Multinodal load forecasting for distribution systems using a fuzzy-artmap neural network
    Abreu, Thays
    Amorim, Aline J.
    Santos-Junior, Carlos R.
    Lotufo, Anna D. P.
    Minussi, Carlos R.
    [J]. APPLIED SOFT COMPUTING, 2018, 71 : 307 - 316
  • [2] Application of singular spectrum analysis to the smoothing of raw kinematic signals
    Alonso, FJ
    Del Castillo, JM
    Pintado, P
    [J]. JOURNAL OF BIOMECHANICS, 2005, 38 (05) : 1085 - 1092
  • [3] Alves PB, 2020, OCEAN ENG, V202, P10716, DOI [10.1016/j.oceaneng, DOI 10.1016/J.OCEANENG]
  • [4] Intelligent techniques for forecasting electricity consumption of buildings
    Amber, K. P.
    Ahmad, R.
    Aslam, M. W.
    Kousar, A.
    Usman, M.
    Khan, M. S.
    [J]. ENERGY, 2018, 157 : 886 - 893
  • [5] Amorim Abreu T J., 2019, Em 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), P1, DOI [DOI 10.1109/ISGTLA.2019.8894980, 10.1109/ISGTLA.2019.8894980]
  • [6] [Anonymous], 2011, DES AUT TEST EUR C E
  • [7] Antunes JFonseca., 2013, IEEE GRENOBLE POWERT, P1
  • [8] Rule-based autoregressive moving average models for forecasting load on special days: A case study for France
    Arora, Siddharth
    Taylor, James W.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 266 (01) : 259 - 268
  • [9] Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods
    Arora, Siddharth
    Taylor, James W.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 3235 - 3242
  • [10] Bandyopadhyay S., 2015, 2015 ACM 6 INT C, P121, DOI 10.1145/2768510.2768539