Selective Crystallization of Organic Semiconductors for High Performance Organic Field-Effect Transistors

被引:11
|
作者
Di, Chong-an [1 ]
Yu, Gui [1 ]
Liu, Yunqi [1 ]
Guo, Yunlong [1 ]
Sun, Xiangnan [1 ]
Zheng, Jian [1 ]
Wen, Yugeng [1 ]
Wu, Weiping [1 ]
Zhu, Daoben [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
THIN-FILM TRANSISTORS; COMPLEMENTARY CIRCUITS; SINGLE-CRYSTALS; VAPOR-PHASE; N-TYPE; COPOLYMERS; DEPOSITION; PENTACENE; MOBILITY;
D O I
10.1021/cm902594y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The patterning of an organic layer, a big challenge for organic field-effect transistors (OFETs), have recently received considerable attention. By using copper tetracyanoquinodimethane (Cu-TCNQ) modified copper electrodes with nanostructure, selective polycrystalline growth of organic semiconductors is achieved. For different organic semiconductors, varied ways for crystal growth are observed. The OFETs based on selectively deposited tetracyanoquinodimethane (TCNQ), rubrene, and copper phthalocyanine crystals are fabricated and exhibit good device performance. Rubrene devices exhibit maximum field-effect mobility up to 4.6 cm(2)/(V.s) which is comparable to that of corresponding single crystal device. In addition, an organic inverter made of patterned rubrene and TCNQ exhibits a gain of 23. These results offer a general approach to the fabrication of high performance OFETs and organic circuits.
引用
收藏
页码:4873 / 4879
页数:7
相关论文
共 50 条
  • [41] Development of high-performance printed organic field-effect transistors and integrated circuits
    Xu, Yong
    Liu, Chuan
    Khim, Dongyoon
    Noh, Yong-Young
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (40) : 26553 - 26574
  • [42] Interpenetrating polymer network dielectrics for high-performance organic field-effect transistors
    Lee, Hwa Sung
    Park, Kyungmin
    Kim, Jong-Dae
    Han, Taehwan
    Ryu, Kwang Hee
    Lim, Ho Sun
    Lee, Dong Ryeol
    Kwark, Young-Je
    Cho, Jeong Ho
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (19) : 6968 - 6974
  • [43] High-performance semiconductors based on oligocarbazole-thiophene derivatives for solution-fabricated organic field-effect transistors
    Chang, Gung-Pei
    Hsieh, Kuo-Huang
    THIN SOLID FILMS, 2013, 527 : 291 - 298
  • [44] Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors
    Chen, Jinyang
    Yang, Jie
    Guo, Yunlong
    Liu, Yunqi
    ADVANCED MATERIALS, 2022, 34 (22)
  • [45] Pursuing High-Performance Organic Field-Effect Transistors through Organic Salt Doping
    Lu, Dingyi
    Huang, Fanming
    Gao, Caifang
    Yang, Jianming
    Guo, Jing
    Hu, Yuanyuan
    Bao, Qinye
    Noh, Yong-Young
    Chu, Junhao
    Li, Wenwu
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)
  • [46] Heteroatom Substituted Organic/Polymeric Semiconductors and their Applications in Field-Effect Transistors
    Zhang, Weifeng
    Liu, Yunqi
    Yu, Gui
    ADVANCED MATERIALS, 2014, 26 (40) : 6898 - 6904
  • [47] Self-assembled organic semiconductors for monolayer field-effect transistors
    O. V. Borshchev
    S. A. Ponomarenko
    Polymer Science Series C, 2014, 56 : 32 - 46
  • [48] Modulated Thermoelectric Properties of Organic Semiconductors Using Field-Effect Transistors
    Zhang, Fengjiao
    Zang, Yaping
    Huang, Dazhen
    Di, Chong-an
    Gao, Xike
    Sirringhaus, Henning
    Zhu, Daoben
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (20) : 3004 - 3012
  • [49] Physics of organic ferroelectric field-effect transistors
    Brondijk, Jakob J.
    Asadi, Kamal
    Blom, Paul W. M.
    de Leeuw, Dago M.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (01) : 47 - 54
  • [50] Organic Field-Effect Transistors for CMOS Devices
    Melzer, Christian
    von Seggern, Heinz
    ORGANIC ELECTRONICS, 2010, 223 : 213 - 257