Selective Crystallization of Organic Semiconductors for High Performance Organic Field-Effect Transistors

被引:11
|
作者
Di, Chong-an [1 ]
Yu, Gui [1 ]
Liu, Yunqi [1 ]
Guo, Yunlong [1 ]
Sun, Xiangnan [1 ]
Zheng, Jian [1 ]
Wen, Yugeng [1 ]
Wu, Weiping [1 ]
Zhu, Daoben [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
THIN-FILM TRANSISTORS; COMPLEMENTARY CIRCUITS; SINGLE-CRYSTALS; VAPOR-PHASE; N-TYPE; COPOLYMERS; DEPOSITION; PENTACENE; MOBILITY;
D O I
10.1021/cm902594y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The patterning of an organic layer, a big challenge for organic field-effect transistors (OFETs), have recently received considerable attention. By using copper tetracyanoquinodimethane (Cu-TCNQ) modified copper electrodes with nanostructure, selective polycrystalline growth of organic semiconductors is achieved. For different organic semiconductors, varied ways for crystal growth are observed. The OFETs based on selectively deposited tetracyanoquinodimethane (TCNQ), rubrene, and copper phthalocyanine crystals are fabricated and exhibit good device performance. Rubrene devices exhibit maximum field-effect mobility up to 4.6 cm(2)/(V.s) which is comparable to that of corresponding single crystal device. In addition, an organic inverter made of patterned rubrene and TCNQ exhibits a gain of 23. These results offer a general approach to the fabrication of high performance OFETs and organic circuits.
引用
收藏
页码:4873 / 4879
页数:7
相关论文
共 50 条
  • [31] Reliability of Organic Field-Effect Transistors
    Sirringhaus, Henning
    ADVANCED MATERIALS, 2009, 21 (38-39) : 3859 - 3873
  • [32] Anthracene-based semiconductors for organic field-effect transistors
    Chen, Mengyun
    Yan, Lijia
    Zhao, Yang
    Murtaza, Imran
    Meng, Hong
    Huang, Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (28) : 7416 - 7444
  • [33] Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors
    Mei, Jianguo
    Diao, Ying
    Appleton, Anthony L.
    Fang, Lei
    Bao, Zhenan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (18) : 6724 - 6746
  • [34] Development of n-type polymer semiconductors for organic field-effect transistors
    Choi, Jongwan
    Song, Heeseok
    Kim, Nakjoong
    Kim, Felix Sunjoo
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (06)
  • [35] Solution-Processed Centimeter-Scale Highly Aligned Organic Crystalline Arrays for High-Performance Organic Field-Effect Transistors
    Duan, Shuming
    Wang, Tao
    Geng, Bowen
    Gao, Xiong
    Li, Chenguang
    Zhang, Jing
    Xi, Yue
    Zhang, Xiaotao
    Ren, Xiaochen
    Hu, Wenping
    ADVANCED MATERIALS, 2020, 32 (12)
  • [36] Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors
    Liu, Qian
    Sun, Huabin
    Blaikie, Chula
    Caporale, Chiara
    Manzhos, Sergei
    Feron, Krishna
    MacLeod, Jennifer M.
    Massi, Massimiliano
    Bottle, Steven E.
    Bell, John
    Noh, Yong-Young
    Sonar, Prashant
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (15) : 12374 - 12385
  • [37] Organic field-effect transistors
    Malachowski, M. J.
    Zmija, J.
    OPTO-ELECTRONICS REVIEW, 2010, 18 (02) : 121 - 136
  • [38] High-performance Organic Field-effect Transistors with Ionic Liquids
    Ono, Shimpei
    Miwa, Kazumoto
    Seki, Shiro
    Takeya, Junichi
    ELECTROCHEMISTRY, 2009, 77 (08) : 617 - 620
  • [39] Polarization Modulation in Ferroelectric Organic Field-Effect Transistors
    Laudari, A.
    Mazza, A. R.
    Daykin, A.
    Khanra, S.
    Ghosh, K.
    Cummings, F.
    Muller, T.
    Miceli, P. F.
    Guha, S.
    PHYSICAL REVIEW APPLIED, 2018, 10 (01):
  • [40] High performance organic field-effect transistors with fluoropolymer gate dielectric
    Kalb, Wolfgang L.
    Mathis, Thomas
    Haas, Simon
    Stassen, Arno F.
    Batlogg, Bertram
    ORGANIC FIELD-EFFECT TRANSISTORS VI, 2007, 6658