Development of Catalyst Free Carbon Nanotubes from Coal and Waste Plastics

被引:34
作者
Dosodia, Abhishek [1 ]
Lal, Chhotey [2 ]
Singh, B. P. [2 ]
Mathur, R. B. [2 ]
Sharma, D. K. [1 ]
机构
[1] Indian Inst Technol, Ctr Energy Studies, New Delhi 110016, India
[2] Natl Phys Lab, Carbon Technol Unit, Div Engn Mat, New Delhi 110012, India
关键词
Arc discharge; Carbon nanotube; Coal; Waste plastics; AMBIENT-PRESSURE; FULLERENE; HYDROGEN; LITHIUM;
D O I
10.1080/15363830903133238
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
DC-Arc technique has been used to synthesize carbon nanotubes from super clean coal, chemically cleaned coal, original coal and waste plastics instead of using high purity graphite in the presence of metal catalysts. The results obtained are compared in terms of yield, purity and type of carbon nanotubes produced from different types of raw material used. In the present study different types of raw materials have been prepared i.e. chemically cleaned coal and super clean coal, and the carbon nanotubes have been synthesized by DC Arc discharge method. Taking in account the present need of utilizing coal as a cheaper raw material for bulk production of carbon nanotubes and utilization of waste plastics (which itself is a potential environmental threat) for production of such an advance material the present work was undertaken. Since the process does not involve presence of any kind of metal catalyst, it avoids the cost intensive process of removal of these metal particles. The residual coal obtained after refining has major fuel potential and can be utilized for various purposes.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 32 条
[1]   CAPILLARITY-INDUCED FILLING OF CARBON NANOTUBES [J].
AJAYAN, PM ;
IIJIMA, S .
NATURE, 1993, 361 (6410) :333-334
[2]  
Baxendale M, 2003, IEE Proc Nanobiotechnol, V150, P3, DOI 10.1049/ip-nbt:20030576
[3]   Applications of Carbon Nanotubes in Biotechnology and Biomedicine [J].
Bekyarova, Elena ;
Ni, Yingchun ;
Malarkey, Erik B. ;
Montana, Vedrana ;
McWilliams, Jared L. ;
Haddon, Robert C. ;
Parpura, Vladimir .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2005, 1 (01) :3-17
[4]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[5]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[6]  
DISMA F, 1997, SOLID STATE IONICS, V98, P145
[7]   Evidence for fullerene in a coal of Yunnan, Southwestern China [J].
Fang, PH ;
Wong, R .
MATERIALS RESEARCH INNOVATIONS, 1997, 1 (02) :130-132
[8]   Electrochemical intercalation of single-walled carbon nanotubes with lithium [J].
Gao, B ;
Kleinhammes, A ;
Tang, XP ;
Bower, C ;
Fleming, L ;
Wu, Y ;
Zhou, O .
CHEMICAL PHYSICS LETTERS, 1999, 307 (3-4) :153-157
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J].
Journet, C ;
Maser, WK ;
Bernier, P ;
Loiseau, A ;
delaChapelle, ML ;
Lefrant, S ;
Deniard, P ;
Lee, R ;
Fischer, JE .
NATURE, 1997, 388 (6644) :756-758